Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-599, Brazil.
Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
BMC Genomics. 2018 Sep 24;19(1):701. doi: 10.1186/s12864-018-5064-4.
Life in the ocean will increasingly have to contend with a complex matrix of concurrent shifts in environmental properties that impact their physiology and control their life histories. Rhodoliths are coralline red algae (Corallinales, Rhodophyta) that are photosynthesizers, calcifiers, and ecosystem engineers and therefore represent important targets for ocean acidification (OA) research. Here, we exposed live rhodoliths to near-future OA conditions to investigate responses in their photosynthetic capacity, calcium carbonate production, and associated microbiome using carbon uptake, decalcification assays, and whole genome shotgun sequencing metagenomic analysis, respectively. The results from our live rhodolith assays were compared to similar manipulations on dead rhodolith (calcareous skeleton) biofilms and water column microbial communities, thereby enabling the assessment of host-microbiome interaction under climate-driven environmental perturbations.
Under high pCO conditions, live rhodoliths exhibited positive physiological responses, i.e. increased photosynthetic activity, and no calcium carbonate biomass loss over time. Further, whereas the microbiome associated with live rhodoliths remained stable and resembled a healthy holobiont, the microbial community associated with the water column changed after exposure to elevated pCO.
Our results suggest that a tightly regulated microbial-host interaction, as evidenced by the stability of the rhodolith microbiome recorded here under OA-like conditions, is important for host resilience to environmental stress. This study extends the scarce comprehension of microbes associated with rhodolith beds and their reaction to increased pCO, providing a more comprehensive approach to OA studies by assessing the host holobiont.
海洋生物将越来越多地应对环境属性的复杂共同变化,这些变化影响它们的生理机能并控制其生命史。石珊瑚藻是一种光合作用、钙化和生态系统工程师的珊瑚状红藻(珊瑚藻目,红藻门),因此是海洋酸化(OA)研究的重要目标。在这里,我们将活的石珊瑚藻暴露于近未来的 OA 条件下,分别使用碳吸收、脱钙化测定和全基因组 shotgun 测序宏基因组分析来研究其光合作用能力、碳酸钙产量和相关微生物组的反应。我们对活石珊瑚藻的现场实验结果与对死石珊瑚藻(钙质骨骼)生物膜和水柱微生物群落的类似操作进行了比较,从而能够评估在气候驱动的环境胁迫下宿主-微生物组的相互作用。
在高 pCO 条件下,活石珊瑚藻表现出积极的生理反应,即光合作用活性增加,并且随着时间的推移没有碳酸钙生物量损失。此外,尽管与活石珊瑚藻相关的微生物组保持稳定,类似于健康的整体生物,但在暴露于高 pCO 后,与水柱相关的微生物群落发生了变化。
我们的结果表明,正如这里记录的在 OA 类似条件下石珊瑚藻微生物组的稳定性所证明的那样,微生物与宿主之间的紧密调节的相互作用对于宿主对环境胁迫的恢复力很重要。这项研究扩展了对与石珊瑚床相关的微生物及其对增加的 pCO 反应的理解,通过评估宿主整体生物来提供对 OA 研究更全面的方法。