National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
BMC Biol. 2018 Sep 24;16(1):107. doi: 10.1186/s12915-018-0568-6.
The hierarchical organization of eukaryotic chromatin plays a central role in gene regulation, by controlling the extent to which the transcription machinery can access DNA. The histone variants H3.3 and H2A.Z have recently been identified as key regulatory players in this process, but the underlying molecular mechanisms by which they permit or restrict gene expression remain unclear. Here, we investigated the regulatory function of H3.3 and H2A.Z on chromatin dynamics and Polycomb-mediated gene silencing.
Our ChIP-seq analysis reveals that in mouse embryonic stem (mES) cells, H3K27me3 enrichment correlates strongly with H2A.Z. We further demonstrate that H2A.Z promotes PRC2 activity on H3K27 methylation through facilitating chromatin compaction both in vitro and in mES cells. In contrast, PRC2 activity is counteracted by H3.3 through impairing chromatin compaction. However, a subset of H3.3 may positively regulate PRC2-dependent H3K27 methylation via coordinating depositions of H2A.Z to developmental and signaling genes in mES cells. Using all-trans retinoic acid (tRA)-induced gene as a model, we show that the dynamic deposition of H2A.Z and H3.3 coordinately regulates the PRC2-dependent H3K27 methylation by modulating local chromatin structure at the promoter region during the process of turning genes off.
Our study provides key insights into the mechanism of how histone variants H3.3 and H2A.Z function coordinately to finely tune the PRC2 enzymatic activity during gene silencing, through promoting or impairing chromosome compaction respectively.
真核生物染色质的层级组织在基因调控中起着核心作用,通过控制转录机制能够访问 DNA 的程度来实现。组蛋白变体 H3.3 和 H2A.Z 最近被确定为该过程中的关键调节因子,但它们允许或限制基因表达的潜在分子机制仍不清楚。在这里,我们研究了 H3.3 和 H2A.Z 对染色质动力学和 Polycomb 介导的基因沉默的调节功能。
我们的 ChIP-seq 分析表明,在小鼠胚胎干细胞(mES)中,H3K27me3 富集与 H2A.Z 密切相关。我们进一步证明,H2A.Z 通过促进体外和 mES 细胞中的染色质紧缩,促进 PRC2 对 H3K27 甲基化的活性。相比之下,PRC2 的活性被 H3.3 抵消,通过削弱染色质紧缩来实现。然而,H3.3 的一部分可能通过协调 H2A.Z 到 mES 细胞中发育和信号基因的沉积,来正向调节 PRC2 依赖的 H3K27 甲基化。使用全反式视黄酸(tRA)诱导的基因作为模型,我们表明 H2A.Z 和 H3.3 的动态沉积通过在启动子区域调节局部染色质结构,共同调节 PRC2 依赖的 H3K27 甲基化,从而在基因关闭过程中发挥作用。
我们的研究提供了关键的见解,即组蛋白变体 H3.3 和 H2A.Z 如何通过分别促进或削弱染色体紧缩,协调调节 PRC2 酶活性,以精细调控基因沉默过程中的 H3K27 甲基化。