Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Street, Urbana, IL 61801, USA.
Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
Biochim Biophys Acta Bioenerg. 2018 Nov;1859(11):1191-1198. doi: 10.1016/j.bbabio.2018.08.002. Epub 2018 Aug 22.
The heme‑copper oxidases (HCuOs) are terminal components of the respiratory chain, catalyzing oxygen reduction coupled to the generation of a proton motive force. The C-family HCuOs, found in many pathogenic bacteria under low oxygen tension, utilize a single proton uptake pathway to deliver protons both for O reduction and for proton pumping. This pathway, called the K-pathway, starts at Glu-49 in the accessory subunit CcoP, and connects into the catalytic subunit CcoN via the polar residues Tyr-(Y)-227, Asn (N)-293, Ser (S)-244, Tyr (Y)-321 and internal water molecules, and continues to the active site. However, although the residues are known to be functionally important, little is known about the mechanism and dynamics of proton transfer in the K-pathway. Here, we studied variants of Y227, N293 and Y321. Our results show that in the N293L variant, proton-coupled electron transfer is slowed during single-turnover oxygen reduction, and moreover it shows a pH dependence that is not observed in wildtype. This suggests that there is a shift in the pK of an internal proton donor into an experimentally accessible range, from >10 in wildtype to ~8.8 in N293L. Furthermore, we show that there are distinct roles for the conserved Y321 and Y227. In Y321F, proton uptake from bulk solution is greatly impaired, whereas Y227F shows wildtype-like rates and retains ~50% turnover activity. These tyrosines have evolutionary counterparts in the K-pathway of B-family HCuOs, but they do not have the same roles, indicating diversity in the proton transfer dynamics in the HCuO superfamily.
血红素铜氧化酶(HCuOs)是呼吸链的末端组成部分,催化氧还原与质子动力势的产生偶联。在低氧张力下存在于许多病原细菌中的 C 族 HCuOs 利用单一质子摄取途径为 O 还原和质子泵输送质子。该途径称为 K 途径,始于辅助亚基 CcoP 中的 Glu-49,并通过极性残基 Tyr-(Y)-227、Asn (N)-293、Ser (S)-244、Tyr (Y)-321 和内部水分子连接到催化亚基 CcoN,并继续到活性位点。然而,尽管已知这些残基在功能上很重要,但对于 K 途径中的质子转移机制和动力学知之甚少。在这里,我们研究了 Y227、N293 和 Y321 的变体。我们的结果表明,在 N293L 变体中,单 turnover 氧还原过程中质子偶联电子转移速度减慢,而且它表现出在野生型中观察不到的 pH 依赖性。这表明内部质子供体的 pK 值发生了变化,进入实验可及范围,从野生型中的>10 变为 N293L 中的8.8。此外,我们表明保守的 Y321 和 Y227 有不同的作用。在 Y321F 中,从本体溶液中摄取质子受到严重损害,而 Y227F 表现出与野生型相似的速率并保留50%的周转率活性。这些酪氨酸在 B 族 HCuOs 的 K 途径中有进化对应物,但它们的作用不同,表明 HCuO 超家族中质子转移动力学的多样性。