Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom; Physics, School of Sciences and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN, United Kingdom.
Biochim Biophys Acta Bioenerg. 2017 May;1858(5):396-406. doi: 10.1016/j.bbabio.2017.02.013. Epub 2017 Mar 1.
Heme-copper oxidases are membrane protein complexes that catalyse the final step of the aerobic respiration, namely the reduction of oxygen to water. The energy released during catalysis is coupled to the active translocation of protons across the membrane, which contributes to the establishment of an electrochemical gradient that is used for ATP synthesis. The distinctive C-type (or cbb) cytochrome c oxidases, which are mostly present in proteobacteria, exhibit a number of unique structural and functional features, including high catalytic activity at low oxygen concentrations. At the moment, the functioning mechanism of C-type oxidases, in particular the proton transfer/pumping mechanism presumably via a single proton channel, is still poorly understood. In this work we used all-atom molecular dynamics simulations and continuum electrostatics calculations to obtain atomic-level insights into the hydration and dynamics of a cbb oxidase. We provide the details of the water dynamics and proton transfer pathways for both the "chemical" and "pumped" protons, and show that formation of protonic connections is strongly affected by the protonation state of key residues, namely H243, E323 and H337.
血红素铜氧化酶是膜蛋白复合物,可催化需氧呼吸的最后一步,即将氧气还原为水。催化过程中释放的能量与质子在膜中的主动转运相偶联,这有助于建立电化学梯度,用于 ATP 的合成。大多数存在于变形菌中的独特的 C 型(或 cbb)细胞色素 c 氧化酶具有许多独特的结构和功能特征,包括在低氧浓度下具有高催化活性。目前,C 型氧化酶的作用机制,特别是通过单个质子通道进行质子转移/泵送的机制,仍知之甚少。在这项工作中,我们使用全原子分子动力学模拟和连续静电计算,从原子水平深入了解 cbb 氧化酶的水合作用和动力学。我们提供了“化学”和“泵送”质子的水动力学和质子转移途径的详细信息,并表明质子连接的形成强烈受到关键残基(即 H243、E323 和 H337)的质子化状态的影响。