Suppr超能文献

体内水分中生物氧天然丰度的变化对使用双标记水时采用贝叶斯方法建模总能量消耗的启示。

Implications of the variation in biological O natural abundance in body water to inform use of Bayesian methods for modelling total energy expenditure when using doubly labelled water.

作者信息

Singh Priya A, Orford Elise R, Donkers Kevin, Bluck Leslie J C, Venables Michelle C

机构信息

Stable Isotope Facility, MRC Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK.

出版信息

Rapid Commun Mass Spectrom. 2018 Dec 30;32(24):2122-2128. doi: 10.1002/rcm.8291.

Abstract

RATIONALE

Variation in O natural abundance can lead to errors in the calculation of total energy expenditure (TEE) when using the doubly labelled water (DLW) method. The use of Bayesian statistics allows a distribution to be assigned to O natural abundance, thus allowing a best-fit value to be used in the calculation. The aim of this study was to calculate within-subject variation in O natural abundance and apply this to our original working model for TEE calculation.

METHODS

Urine samples from a cohort of 99 women, dosed with 50 g of 20% H O, undertaking a 14-day breast milk intake protocol, were analysed for O. The within-subject variance was calculated and applied to a Bayesian model for the calculation of TEE in a separate cohort of 36 women. This cohort of 36 women had taken part in a DLW study and had been dosed with 80 mg/kg body weight H O and 150 mg/kg body weight H O.

RESULTS

The average change in the δ O value from the 99 women was 1.14‰ (0.77) [0.99, 1.29], with the average within-subject O natural abundance variance being 0.13‰ (0.25) [0.08, 0.18]. There were no significant differences in TEE (9745 (1414), 9804 (1460) and 9789 (1455) kJ/day, non-Bayesian, Bluck Bayesian and modified Bayesian models, respectively) between methods.

CONCLUSIONS

Our findings demonstrate that using a reduced natural variation in O as calculated from a population does not impact significantly on the calculation of TEE in our model. It may therefore be more conservative to allow a larger variance to account for individual extremes.

摘要

原理

使用双标记水(DLW)法时,氧自然丰度的变化会导致总能量消耗(TEE)计算出现误差。贝叶斯统计方法允许为氧自然丰度分配一个分布,从而在计算中使用最佳拟合值。本研究的目的是计算个体内氧自然丰度的变化,并将其应用于我们最初的TEE计算工作模型。

方法

对99名女性组成的队列的尿液样本进行氧分析,这些女性摄入了50 g 20%的H₂¹⁸O,并遵循14天的母乳摄入方案。计算个体内方差,并将其应用于贝叶斯模型,以计算另一组36名女性的TEE。这36名女性参与了一项DLW研究,她们按体重每千克80 mg的H₂¹⁸O和每千克150 mg的H₂³H¹⁶O进行了剂量摄入。

结果

99名女性的δ¹⁸O值平均变化为1.14‰(0.77)[0.99,1.29],个体内氧自然丰度的平均方差为0.13‰(0.25)[0.08,0.18]。不同方法之间的TEE无显著差异(非贝叶斯模型、Bluck贝叶斯模型和改良贝叶斯模型分别为9745(1414)、9804(1460)和9789(1455)kJ/天)。

结论

我们的研究结果表明,在我们的模型中,使用根据群体计算得出的氧自然变化减少值对TEE的计算没有显著影响。因此,允许更大的方差以考虑个体极端情况可能更为保守。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc1/6283043/44fa626df9e7/RCM-32-2122-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验