Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, New Jersey USA, 08544.
Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
Phys Rev E. 2018 Aug;98(2-1):022409. doi: 10.1103/PhysRevE.98.022409.
We theoretically explore fluidization of epithelial tissues by active T1 neighbor exchanges. We show that the geometry of cell-cell junctions encodes important information about the local features of the energy landscape, which we support by an elastic theory of T1 transformations. Using a 3D vertex model, we show that the degree of active noise driving forced cell rearrangements governs the stress-relaxation timescale of the tissue. We study tissue response to in-plane shear at different timescales. At short time, the tissue behaves as a solid, whereas its long-time fluid behavior can be associated with an effective viscosity which scales with the rate of active T1 transformations. Furthermore, we develop a coarse-grained theory, where we treat the tissue as an active fluid and confirm the results of the vertex model. The impact of cell rearrangements on tissue shape is illustrated by studying axial compression of an epithelial tube.
我们从理论上探讨了通过活跃的 T1 邻接交换使上皮组织流化的过程。我们表明,细胞-细胞连接的几何形状编码了关于能量景观局部特征的重要信息,我们通过 T1 转换的弹性理论对此提供了支持。使用 3D 顶点模型,我们表明,活性噪声驱动的强制细胞重排的程度控制了组织的应力松弛时间尺度。我们研究了组织在不同时间尺度下对平面剪切的响应。在短时间内,组织表现为固体,而其长时间的流体行为可以与有效粘度相关联,有效粘度与活性 T1 转换的速率成比例。此外,我们还开发了一个粗粒化理论,将组织视为活性流体,并确认了顶点模型的结果。通过研究上皮管的轴向压缩,我们展示了细胞重排对组织形状的影响。