Suppr超能文献

无序镶嵌网络的微观和宏观应力-应变关系。

Micro and Macroscopic Stress-Strain Relations in Disordered Tessellated Networks.

机构信息

Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, USA.

Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, New Jersey 08854, USA.

出版信息

Phys Rev Lett. 2023 May 5;130(18):188201. doi: 10.1103/PhysRevLett.130.188201.

Abstract

We demonstrate that for a rigid and incompressible network in mechanical equilibrium, the microscopic stress and strain follows a simple relation, σ=pE, where σ is the deviatoric stress, E is a mean-field strain tensor, and p is the hydrostatic pressure. This relationship arises as the natural consequence of energy minimization or equivalently, mechanical equilibration. The result suggests not only that the microscopic stress and strain are aligned in the principal directions, but also microscopic deformations are predominantly affine. The relationship holds true regardless of the different (foam or tissue) energy model considered, and directly leads to a simple prediction for the shear modulus, μ=⟨p⟩/2, where ⟨p⟩ is the mean pressure of the tessellation, for general randomized lattices.

摘要

我们证明,对于处于机械平衡的刚性不可压缩网络,微观应力和应变遵循简单的关系σ=pE,其中σ是偏应力,E 是平均场应变张量,p 是静水压力。这种关系是能量最小化或等效的机械平衡的自然结果。该结果不仅表明微观应力和应变在主方向上一致,而且微观变形主要是仿射的。无论考虑的不同(泡沫或组织)能量模型如何,该关系都成立,并直接导致了一般随机晶格中剪切模量μ=⟨p⟩/2的简单预测,其中⟨p⟩是镶嵌的平均压力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/299b/10586522/d8f3119f0474/nihms-1932687-f0001.jpg

相似文献

2
Constrained Rouse model of rubber viscoelasticity.橡胶粘弹性的约束Rouse模型
J Chem Phys. 2005 Jul 15;123(3):34902. doi: 10.1063/1.1955445.
4
Principal component analysis of shear strain effects.剪切应变效应的主成分分析
Ultrasonics. 2009 May;49(4-5):472-83. doi: 10.1016/j.ultras.2008.12.003. Epub 2009 Jan 1.
7
Stress and bubble pressure response of wet foam to continuous and oscillatory sinusoidal shear.
Eur Phys J E Soft Matter. 2018 Dec 24;41(12):149. doi: 10.1140/epje/i2018-11761-1.
8
Non-affine deformations in polymer hydrogels.聚合物水凝胶中的非仿射形变。
Soft Matter. 2012 Jan 1;8(31):8039-8049. doi: 10.1039/c2sm25364j. Epub 2012 May 11.

本文引用的文献

2
Anomalous elasticity of a cellular tissue vertex model.细胞组织顶点模型的反常弹性
Phys Rev E. 2022 Jun;105(6-1):064611. doi: 10.1103/PhysRevE.105.064611.
4
E and Gamma distributions in polygonal networks.多边形网络中的E分布和伽马分布。
Phys Rev Res. 2021 Oct-Dec;3(4). doi: 10.1103/physrevresearch.3.l042001. Epub 2021 Oct 5.
7
Junctional and cytoplasmic contributions in wound healing.连接和细胞质在伤口愈合中的作用。
J R Soc Interface. 2020 Aug;17(169):20200264. doi: 10.1098/rsif.2020.0264. Epub 2020 Aug 5.
9
Anisotropy links cell shapes to tissue flow during convergent extension.在汇聚延伸过程中,各向异性将细胞形状与组织流动联系起来。
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13541-13551. doi: 10.1073/pnas.1916418117. Epub 2020 May 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验