Department of Physics, Syracuse University, Syracuse, New York, United States of America.
Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
PLoS Comput Biol. 2021 Jun 7;17(6):e1009049. doi: 10.1371/journal.pcbi.1009049. eCollection 2021 Jun.
Large-scale tissue deformation during biological processes such as morphogenesis requires cellular rearrangements. The simplest rearrangement in confluent cellular monolayers involves neighbor exchanges among four cells, called a T1 transition, in analogy to foams. But unlike foams, cells must execute a sequence of molecular processes, such as endocytosis of adhesion molecules, to complete a T1 transition. Such processes could take a long time compared to other timescales in the tissue. In this work, we incorporate this idea by augmenting vertex models to require a fixed, finite time for T1 transitions, which we call the "T1 delay time". We study how variations in T1 delay time affect tissue mechanics, by quantifying the relaxation time of tissues in the presence of T1 delays and comparing that to the cell-shape based timescale that characterizes fluidity in the absence of any T1 delays. We show that the molecular-scale T1 delay timescale dominates over the cell shape-scale collective response timescale when the T1 delay time is the larger of the two. We extend this analysis to tissues that become anisotropic under convergent extension, finding similar results. Moreover, we find that increasing the T1 delay time increases the percentage of higher-fold coordinated vertices and rosettes, and decreases the overall number of successful T1s, contributing to a more elastic-like-and less fluid-like-tissue response. Our work suggests that molecular mechanisms that act as a brake on T1 transitions could stiffen global tissue mechanics and enhance rosette formation during morphogenesis.
在生物过程(如形态发生)中,大规模的组织变形需要细胞重排。在融合的细胞单层中,最简单的重排涉及四个细胞之间的邻居交换,称为 T1 转换,与泡沫类似。但与泡沫不同的是,细胞必须执行一系列分子过程,如粘附分子的内吞作用,才能完成 T1 转换。与组织中的其他时间尺度相比,这些过程可能需要很长时间。在这项工作中,我们通过增加顶点模型来实现这个想法,要求 T1 转换有一个固定的、有限的时间,我们称之为“T1 延迟时间”。我们通过量化存在 T1 延迟时组织的弛豫时间,并将其与不存在任何 T1 延迟时表征流动性的细胞形状尺度进行比较,来研究 T1 延迟时间的变化如何影响组织力学。我们表明,当 T1 延迟时间是两个时间尺度中较大的一个时,分子尺度上的 T1 延迟时间尺度支配着细胞形状尺度上的集体响应时间尺度。我们将这种分析扩展到在会聚延伸下变得各向异性的组织,发现了类似的结果。此外,我们发现增加 T1 延迟时间会增加更高阶协调顶点和玫瑰花结的百分比,并减少成功的 T1 的总数,导致更类似于弹性的组织响应,而不是更类似于流体的组织响应。我们的工作表明,作为 T1 转换制动器的分子机制可能会使全局组织力学变硬,并在形态发生过程中增强玫瑰花结的形成。