Suppr超能文献

时间序列的突发树分解揭示了时间相关性的结构。

Burst-tree decomposition of time series reveals the structure of temporal correlations.

机构信息

Department of Physics, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.

Asia Pacific Center for Theoretical Physics, Pohang, 37673, Republic of Korea.

出版信息

Sci Rep. 2020 Jul 22;10(1):12202. doi: 10.1038/s41598-020-68157-1.

Abstract

Comprehensive characterization of non-Poissonian, bursty temporal patterns observed in various natural and social processes is crucial for understanding the underlying mechanisms behind such temporal patterns. Among them bursty event sequences have been studied mostly in terms of interevent times (IETs), while the higher-order correlation structure between IETs has gained very little attention due to the lack of a proper characterization method. In this paper we propose a method of representing an event sequence by a burst tree, which is then decomposed into a set of IETs and an ordinal burst tree. The ordinal burst tree exactly captures the structure of temporal correlations that is entirely missing in the analysis of IET distributions. We apply this burst-tree decomposition method to various datasets and analyze the structure of the revealed burst trees. In particular, we observe that event sequences show similar burst-tree structure, such as heavy-tailed burst-size distributions, despite of very different IET distributions. This clearly shows that the IET distributions and the burst-tree structures can be separable. The burst trees allow us to directly characterize the preferential and assortative mixing structure of bursts responsible for the higher-order temporal correlations. We also show how to use the decomposition method for the systematic investigation of such correlations captured by the burst trees in the framework of randomized reference models. Finally, we devise a simple kernel-based model for generating event sequences showing appropriate higher-order temporal correlations. Our method is a tool to make the otherwise overwhelming analysis of higher-order correlations in bursty time series tractable by turning it into the analysis of a tree structure.

摘要

全面描述各种自然和社会过程中观察到的非泊松、突发的时间模式对于理解这些时间模式背后的潜在机制至关重要。其中,突发事件序列主要是从事件间时间 (IET) 角度进行研究的,而由于缺乏适当的特征描述方法,IET 之间的高阶相关结构几乎没有得到关注。在本文中,我们提出了一种用突发树来表示事件序列的方法,然后将其分解为一组 IET 和有序突发树。有序突发树准确地捕捉了在 IET 分布分析中完全缺失的时间相关性结构。我们将这种突发树分解方法应用于各种数据集,并分析所揭示的突发树的结构。特别是,我们观察到尽管 IET 分布非常不同,但事件序列表现出相似的突发树结构,例如长尾突发大小分布。这清楚地表明,IET 分布和突发树结构是可分离的。突发树允许我们直接描述负责高阶时间相关性的突发的优先和聚集混合结构。我们还展示了如何在随机参考模型的框架内,使用分解方法系统地研究突发树中捕获的这种相关性。最后,我们设计了一种简单的基于核的模型来生成显示适当高阶时间相关性的事件序列。我们的方法是一种工具,通过将其转化为树结构的分析,使对突发时间序列中高阶相关性的压倒性分析变得可行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9979/7376115/134e365c33c2/41598_2020_68157_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验