Neumann Hendrikje R, Selhuber-Unkel Christine
Biocompatible Nanomaterials, Institute for Materials Science, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany.
Beilstein J Nanotechnol. 2018 Sep 4;9:2372-2380. doi: 10.3762/bjnano.9.222. eCollection 2018.
The production of micrometer-sized structures comprised of nanoparticles in defined patterns and densities is highly important in many fields, ranging from nano-optics to biosensor technologies and biomaterials. A well-established method to fabricate quasi-hexagonal patterns of metal nanoparticles is block copolymer micelle nanolithography, which relies on the self-assembly of metal-loaded micelles on surfaces by a dip-coating or spin-coating process. Using this method, the spacing of the nanoparticles is controlled by the size of the micelles and by the coating conditions. Whereas block copolymer micelle nanolithography is a high-throughput method for generating well-ordered nanoparticle patterns at the nanoscale, so far it has been inefficient in generating a hierarchical overlay structure at the micrometer scale. Here, we show that by combining block copolymer micelle nanolithography with inkjet printing, hierarchical patterns of gold nanoparticles in the form of microstructures can be achieved in a high-throughput process. Inkjet printing was used to generate droplets of the micelle solution on surfaces, resulting in printed circles that contain patterns of gold nanoparticles with an interparticle spacing between 25 and 42 nm. We tested this method on different silicon and nickel-titanium surfaces and the generated patterns were found to depend on the material type and surface topography. Based on the presented strategy, we were able to achieve patterning times of a few seconds and produce quasi-hexagonal micro-nanopatterns of gold nanoparticles on smooth surfaces. Hence, this method is a high-throughput method that can be used to coat surfaces with nanoparticles in a user-defined pattern at the micrometer scale. As the nanoparticles provide a chemical contrast on the surface, they can be further functionalized and are therefore highly relevant for biological applications.
以特定图案和密度由纳米颗粒构成的微米级结构的制备在许多领域都非常重要,从纳米光学到生物传感器技术和生物材料。一种成熟的制造金属纳米颗粒准六边形图案的方法是嵌段共聚物胶束纳米光刻技术,它依靠通过浸涂或旋涂工艺使负载金属的胶束在表面自组装。使用这种方法,纳米颗粒的间距由胶束的大小和涂层条件控制。虽然嵌段共聚物胶束纳米光刻技术是一种在纳米尺度上生成有序纳米颗粒图案 的高通量方法,但到目前为止,它在生成微米尺度的分层覆盖结构方面效率不高。在这里,我们表明,通过将嵌段共聚物胶束纳米光刻技术与喷墨打印相结合,可以在高通量过程中实现微结构形式的金纳米颗粒分层图案。喷墨打印用于在表面上生成胶束溶液的液滴,从而形成包含金纳米颗粒图案的印刷圆圈,颗粒间间距在25至42纳米之间。我们在不同的硅和镍钛表面上测试了这种方法,发现生成的图案取决于材料类型和表面形貌。基于所提出的策略,我们能够实现几秒的图案化时间,并在光滑表面上生成金纳米颗粒的准六边形微纳图案。因此,这种方法是一种高通量方法,可用于以用户定义的图案在微米尺度上用纳米颗粒涂覆表面。由于纳米颗粒在表面提供了化学对比度,它们可以进一步功能化,因此与生物应用高度相关。