You Daotong, Xu Chunxiang, Wang Jing, Su Wenyue, Zhang Wei, Zhao Jie, Qin Feifei, Liu Yanjun
State Key Laboratory of Bioelectronics, School of Biological Sciences & Medical Engineering , Southeast University , Nanjing 210096 , P. R. China.
State Key Laboratory of Photocatalysis on Energy and Environment , Fuzhou University , Fuzhou 350002 , P. R. China.
ACS Appl Mater Interfaces. 2018 Oct 17;10(41):35184-35193. doi: 10.1021/acsami.8b11988. Epub 2018 Oct 8.
Constructing heterostructured nanomaterials with integrating different functional materials into well-oriented nanoarchitectures is an efficacious tactic to obtain high-performance photocatalysts. In this paper, we fabricated three-dimensional ZnO-WS@CdS core-shell nanorod arrays as visible-light-driven photocatalysts for efficient photocatalytic H production. This unique core-shell heterostructure extends visible-light absorption and provides more active sites. More importantly, the ZnO-WS@CdS nanorod arrays build a beneficial energy level configuration and spatial structure to accelerate the generation, separation, and transfer of the photogenerated electron-hole. On the basis of the synergistic effects, the photocatalytic H rate of optimized ZnO-WS@CdS nanorod arrays achieves 15.12 mmol h g in visible light irradiation, which is 39, 9, and 8 times higher than pure CdS, ZnO-CdS, and CdS-WS photocatalysts. The apparent quantum yield is up to 14.92% at 420 nm. Moreover, the core-shell heterostructure photocatalyst can recycle and maintain stability.
将不同功能材料整合到取向良好的纳米结构中构建异质结构纳米材料是获得高性能光催化剂的有效策略。在本文中,我们制备了三维ZnO-WS@CdS核壳纳米棒阵列作为可见光驱动的光催化剂用于高效光催化产氢。这种独特的核壳异质结构扩展了可见光吸收并提供了更多活性位点。更重要的是,ZnO-WS@CdS纳米棒阵列构建了有益的能级构型和空间结构,以加速光生电子-空穴的产生、分离和转移。基于协同效应,优化后的ZnO-WS@CdS纳米棒阵列在可见光照射下的光催化产氢速率达到15.12 mmol h g,分别是纯CdS、ZnO-CdS和CdS-WS光催化剂的39倍、9倍和8倍。在420 nm处表观量子产率高达14.92%。此外,核壳异质结构光催化剂可循环并保持稳定性。