Zheng Lian-hui, Rao Chang-hui, Gu Nai-ting, Qiu Qi
Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Dec;36(12):4088-93.
To study the thermodynamics properties of the solar atmosphere with different height distribution, the imaging grating spectrometer with excellent image quality is one of the important tools to achieve this goal. However, the atmosphere turbulence can not be avoided for the imaging grating spectrometer installed in the ground-based solar telescope, and the imaging properties of the grating spectrometer will influenced by the wavefront aberration generalized by the atmosphere turbulence and the wavefront aberration generalized by the optical system adjusting errors and the optical element manufacturing errors. The atmospheric turbulence can be effectively compensated by the Adaptive Optics. To correct the wavefront aberrations of the optical system, a correction method based on Adaptive Optics is proposed, and the experiment validation is carried out to verify the feasibility of the method. The results demonstrate that the correction method proposed can effectively correct the wavefront aberration generalized by the atmosphere turbulence and the optical system aberration. The RMS value is roughly equal to 0.025λ after the Adaptive Optics correction. Besides, it has the virtue of lower the requirement of optical system adjusting errors and optical elements manufacturing errors.
为了研究具有不同高度分布的太阳大气的热力学性质,具有优异图像质量的成像光栅光谱仪是实现这一目标的重要工具之一。然而,对于安装在地基太阳望远镜中的成像光栅光谱仪而言,大气湍流无法避免,并且光栅光谱仪的成像特性会受到大气湍流产生的波前像差以及光学系统调整误差和光学元件制造误差产生的波前像差的影响。自适应光学可以有效补偿大气湍流。为了校正光学系统的波前像差,提出了一种基于自适应光学的校正方法,并进行了实验验证以验证该方法的可行性。结果表明,所提出的校正方法可以有效校正大气湍流和光学系统像差产生的波前像差。自适应光学校正后,均方根值大致等于0.025λ。此外,它具有降低对光学系统调整误差和光学元件制造误差要求的优点。