Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.
J Refract Surg. 2010 Jan;26(1):52-6. doi: 10.3928/1081597X-20101215-08.
To evaluate the changes in visual acuity and visual perception generated by correcting higher order aberrations in highly aberrated eyes using a large-stroke adaptive optics visual simulator.
A crx1 Adaptive Optics Visual Simulator (Imagine Eyes) was used to correct and modify the wavefront aberrations in 12 keratoconic eyes and 8 symptomatic postoperative refractive surgery (LASIK) eyes. After measuring ocular aberrations, the device was programmed to compensate for the eye's wavefront error from the second order to the fifth order (6-mm pupil). Visual acuity was assessed through the adaptive optics system using computer-generated ETDRS opto-types and the Freiburg Visual Acuity and Contrast Test.
Mean higher order aberration root-mean-square (RMS) errors in the keratoconus and symptomatic LASIK eyes were 1.88+/-0.99 microm and 1.62+/-0.79 microm (6-mm pupil), respectively. The visual simulator correction of the higher order aberrations present in the keratoconus eyes improved their visual acuity by a mean of 2 lines when compared to their best spherocylinder correction (mean decimal visual acuity with spherocylindrical correction was 0.31+/-0.18 and improved to 0.44+/-0.23 with higher order aberration correction). In the symptomatic LASIK eyes, the mean decimal visual acuity with spherocylindrical correction improved from 0.54+/-0.16 to 0.71+/-0.13 with higher order aberration correction. The visual perception of ETDRS letters was improved when correcting higher order aberrations.
The adaptive optics visual simulator can effectively measure and compensate for higher order aberrations (second to fifth order), which are associated with diminished visual acuity and perception in highly aberrated eyes. The adaptive optics technology may be of clinical benefit when counseling patients with highly aberrated eyes regarding their maximum subjective potential for vision correction.
利用大光程自适应光学视觉模拟器评价矫正高度像差眼中高阶像差后视力和视觉感知的变化。
使用 crx1 自适应光学视觉模拟器(Imagine Eyes)矫正和修正 12 例圆锥角膜眼和 8 例症状性屈光手术后(LASIK)眼的眼像差。测量眼像差后,设备编程补偿眼波前像差从二阶到五阶(6mm 瞳孔)。通过自适应光学系统,使用计算机生成的 ETDRS 视力表和 Freiburg 视力和对比测试评估视力。
圆锥角膜和症状性 LASIK 眼的平均高阶像差均方根(RMS)误差分别为 1.88+/-0.99μm 和 1.62+/-0.79μm(6mm 瞳孔)。与最佳球镜柱镜矫正相比,圆锥角膜眼中的高阶像差视觉模拟器矫正提高了平均 2 行视力(球镜柱镜矫正平均十进制视力为 0.31+/-0.18,高阶像差矫正后提高至 0.44+/-0.23)。在症状性 LASIK 眼中,球镜柱镜矫正的平均十进制视力从 0.54+/-0.16提高到 0.71+/-0.13 时,进行高阶像差矫正。矫正高阶像差后,ETDRS 字母的视觉感知得到改善。
自适应光学视觉模拟器可以有效测量和补偿与高度像差相关的高阶像差(二阶至五阶),从而提高视力和视觉感知。当为高度像差患者提供视力矫正的最大主观潜力咨询时,自适应光学技术可能具有临床益处。