Hajage David, Chauvet Guillaume, Belin Lisa, Lafourcade Alexandre, Tubach Florence, De Rycke Yann
Sorbonne Université, Département Biostatistique Santé Publique et Information Médicale, Centre de Pharmacoépidémiologie (Cephepi), CIC-1421, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France.
INSERM, UMR 1123 ECEVE, Paris, France.
Biom J. 2018 Nov;60(6):1151-1163. doi: 10.1002/bimj.201700330. Epub 2018 Sep 26.
Propensity score (PS) methods are widely used in observational studies for evaluating marginal treatment effects. PS-weighting is a popular PS-based method that allows for estimating both the average treatment effect on the overall population (ATE) and the average treatment effect on the treated population (ATT). Previous research has shown that the variance of the treatment effect is accurately estimated only if the variance estimator takes into account the fact that the propensity score is itself estimated from the available data in a first step of the analysis. In 2016, Austin showed that the bootstrap-based variance estimator was the only existing estimator resulting in approximately correct estimates of standard errors when evaluating a survival outcome and a Cox model was used to estimate a marginal hazard ratio (HR). This author stressed the need to develop a closed-form variance estimator of the marginal HR accounting for the estimation of the PS. In the present research, we developed such variance estimators both for the ATE and ATT. We evaluated their performance with an extensive simulation study and compared them to bootstrap-based variance estimators and to naive variance estimators that do not account for the estimation step. We found that the performance of the proposed variance estimators was similar to that of the bootstrap-based estimators. The proposed variance estimators provide an alternative to the bootstrap estimator, particularly interesting in situations in which time-consumption and/or reproducibility are an important issue. An implementation has been developed for the R software and is freely available (package hrIPW).
倾向得分(PS)方法在观察性研究中被广泛用于评估边际治疗效果。PS加权是一种流行的基于PS的方法,可用于估计总体人群的平均治疗效果(ATE)和治疗人群的平均治疗效果(ATT)。先前的研究表明,只有当方差估计器考虑到倾向得分本身是在分析的第一步中根据可用数据估计出来这一事实时,治疗效果的方差才能得到准确估计。2016年,奥斯汀表明,在评估生存结局且使用Cox模型估计边际风险比(HR)时,基于自助法的方差估计器是唯一能得出近似正确标准误差估计值的现有估计器。该作者强调需要开发一种考虑PS估计的边际HR的闭式方差估计器。在本研究中,我们针对ATE和ATT开发了这样的方差估计器。我们通过广泛的模拟研究评估了它们的性能,并将其与基于自助法的方差估计器以及未考虑估计步骤的朴素方差估计器进行了比较。我们发现,所提出的方差估计器的性能与基于自助法的估计器相似。所提出的方差估计器为自助法估计器提供了一种替代方法,在时间消耗和/或可重复性是重要问题的情况下尤其有趣。我们已经为R软件开发了一个实现版本,并且可以免费获取(包hrIPW)。