Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan.
Biomacromolecules. 2019 Feb 11;20(2):653-661. doi: 10.1021/acs.biomac.8b01304. Epub 2018 Oct 9.
Introducing exogenous genes into plant cells is essential for a wide range of applications in agriculture and plant biotechnology fields. Cationic peptide carriers with cell-penetrating and DNA-binding domains successfully deliver exogenous genes into plants. However, their cell-penetrating activity may be attenuated by undesired electrostatic interactions between the cell-penetrating peptide (CPP) domain and DNA cargo, resulting in limited gene delivery efficiency. Here, we developed the block copolymer maleimide-conjugated tetra(ethylene glycol) and poly(l-lysine) (MAL-TEG-PLL). Through electrostatic interactions with plasmid DNA (pDNA), MAL-TEG-PLL formed a micelle that presented maleimide groups on its surface. The micelle enabled postmodification with cysteine-containing functional peptides, including a CPP (BP100-Cys) and nuclear localization signal (Cys-NLS) via thiol-maleimide conjugation, thereby avoiding undesired interactions. According to a comparison of gene delivery efficiencies among the peptide-postmodified micelles, the amount of BP100-Cys on the micelle surface was key for efficient gene delivery. The BP100-postmodified micelle showed more efficient delivery compared with that of the BP100-premodified micelle. Thus, postmodification of polymeric micelles with functional peptides opens the door to designing highly efficient plant gene delivery systems.
将外源基因导入植物细胞对于农业和植物生物技术领域的广泛应用至关重要。具有细胞穿透和 DNA 结合结构域的阳离子肽载体可成功将外源基因递送至植物中。然而,细胞穿透肽 (CPP) 结构域与 DNA 载物之间的非预期静电相互作用可能会减弱其细胞穿透活性,从而导致基因传递效率有限。在这里,我们开发了马来酰亚胺修饰的四(乙二醇)和聚(L-赖氨酸)嵌段共聚物 (MAL-TEG-PLL)。通过与质粒 DNA (pDNA) 的静电相互作用,MAL-TEG-PLL 形成了一种胶束,其表面呈现出马来酰亚胺基团。该胶束能够通过巯基-马来酰亚胺键合对含半胱氨酸的功能性肽进行后修饰,包括 CPP (BP100-Cys) 和核定位信号 (Cys-NLS),从而避免了非预期的相互作用。根据肽后修饰胶束的基因传递效率比较,胶束表面的 BP100-Cys 数量对于高效基因传递至关重要。BP100 后修饰胶束的传递效率明显高于 BP100 预修饰胶束。因此,功能性肽的聚合物胶束的后修饰为设计高效的植物基因传递系统开辟了道路。