Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Biomacromolecules. 2024 Aug 12;25(8):5110-5120. doi: 10.1021/acs.biomac.4c00497. Epub 2024 Jul 15.
The development of a green and facile method for the controlled synthesis of functional polypeptides is desired for sustainable material applications. In this study, the regioselective synthesis of poly(l-lysine) (polyLys) via enzyme-catalyzed aminolysis was achieved by bulk polymerization of l-lysine ethyl ester (Lys-OEt) using immobilized lipase Novozym 435 (IM-lipase) or trypsin (IM-trypsin). Structural characterization of the obtained polyLys revealed that IM-lipase resulted solely in ε-linked amide bond formation, whereas IM-trypsin predominantly provided α-linked polyLys. Optimization of the conditions for the bulk polymerization using immobilized enzymes resulted in high monomer conversion and a high degree of polymerization, with excellent regioselectivity. Molecular docking simulations revealed different binding conformations of Lys-OEt to the catalytic pockets of lipase and trypsin, which putatively resulted in different amino moieties being used for amide bond formation. The immobilized enzymes were recovered and recycled for bulk polymerization, and the initial activity was maintained in the case of IM-trypsin. The obtained α- and ε-linked polyLys products exhibited different degradability against proteolysis, demonstrating the possibility of versatile applications as sustainable materials. This enzymatic regioregular control enabled the synthesis of well-defined polypeptide-based materials with a diverging structural variety.
为了实现可持续材料的应用,人们希望开发一种绿色、简便的方法来控制合成功能性多肽。在这项研究中,通过使用固定化脂肪酶 Novozym 435(IM-脂肪酶)或胰蛋白酶(IM-胰蛋白酶)对赖氨酸乙酯(Lys-OEt)进行本体聚合,实现了聚(L-赖氨酸)(polyLys)的区域选择性酶促氨解合成。对得到的 polyLys 的结构表征表明,IM-脂肪酶仅导致 ε-连接酰胺键的形成,而 IM-胰蛋白酶主要提供 α-连接的 polyLys。使用固定化酶对本体聚合条件进行优化,得到了高单体转化率和高聚合度,具有优异的区域选择性。分子对接模拟揭示了 Lys-OEt 与脂肪酶和胰蛋白酶催化口袋的不同结合构象,这可能导致不同的氨基部分用于酰胺键形成。固定化酶被回收并用于本体聚合,在 IM-胰蛋白酶的情况下,初始活性得以保持。得到的 α-和 ε-连接的 polyLys 产物在对抗蛋白水解方面表现出不同的降解性,表明它们作为可持续材料具有多种应用的可能性。这种酶促区域规整控制使合成具有不同结构多样性的定义良好的多肽基材料成为可能。