Zereshki Peymon, Wei Yaqing, Long Run, Zhao Hui
Department of Physics and Astronomy , The University of Kansas , Lawrence , Kansas 66045 , United States.
College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China.
J Phys Chem Lett. 2018 Oct 18;9(20):5970-5978. doi: 10.1021/acs.jpclett.8b02622. Epub 2018 Oct 2.
Forming van der Waals multilayer structures with two-dimensional materials is a promising new method for material discovery. The weak van der Waals interlayer interaction without atomic correspondence relaxes lattice matching requirement and allows formation of high-quality interfaces with virtually any combination of two-dimensional materials. However, the weak nature of the van der Waals interaction also makes it challenging to harness emergent properties of such multilayer materials. Previous studies have indicated that in transition metal dichalcogenide bilayer heterostructures, the interlayer charge and energy transfer is highly efficient. Therefore, it is important to understand interlayer coupling in these materials and its role on charge and energy transfer. Here we show that in a MoSe/WSe/WS trilayer, the interlayer coupling is strong enough to form layer-coupled states in the conduction band with the electron wave function extends to all three layers. Density functional theory calculations reveal that the layer-coupled states in Q valley are about 0.1 eV below the individual monolayer states in K valley, which is consistent with photoluminescence measurements. Transient absorption measurements show that these layer-coupled states provide a channel for ultrafast interlayer charge transfer between the top WS and the bottom MoSe layers. In this process, electrons from the K valley of the individual monolayers are scattered to the layer-coupled states in Q valley. Such a partial charge transfer allows formation of partial-indirect excitons with the holes in one monolayer while electrons shared by three layers. The formation of layer-coupled states is promising for harnessing emergent properties of transition metal dichalcogenide multilayer heterostructures. Our findings also provide new ingredient to understand charge and energy transfer in transition metal dichalcogenide heterobilayers, as the layer-coupled states can play important roles in the efficient transfer observed in these systems.
利用二维材料形成范德华多层结构是一种很有前景的材料发现新方法。没有原子对应关系的弱范德华层间相互作用放宽了晶格匹配要求,并允许与几乎任何二维材料组合形成高质量界面。然而,范德华相互作用的弱性质也使得利用此类多层材料的新兴特性具有挑战性。先前的研究表明,在过渡金属二硫属化物双层异质结构中,层间电荷和能量转移非常高效。因此,了解这些材料中的层间耦合及其在电荷和能量转移中的作用非常重要。在这里,我们表明,在MoSe/WSe/WS三层结构中,层间耦合足够强,能够在导带中形成层耦合态,电子波函数延伸到所有三层。密度泛函理论计算表明,Q谷中的层耦合态比K谷中单个单层态低约0.1 eV,这与光致发光测量结果一致。瞬态吸收测量表明,这些层耦合态为顶部WS层和底部MoSe层之间的超快层间电荷转移提供了一个通道。在这个过程中,单个单层K谷中的电子被散射到Q谷中的层耦合态。这种部分电荷转移允许形成部分间接激子,其中一个单层中有空穴,而电子由三层共享。层耦合态的形成对于利用过渡金属二硫属化物多层异质结构的新兴特性很有前景。我们的发现还为理解过渡金属二硫属化物异质双层中的电荷和能量转移提供了新的要素,因为层耦合态可以在这些系统中观察到的有效转移中发挥重要作用。