Suppr超能文献

混合维度纳米级三层膜中的超快电荷转移级联

Ultrafast Charge Transfer Cascade in a Mixed-Dimensionality Nanoscale Trilayer.

作者信息

Myers Alexis R, Li Zhaodong, Gish Melissa K, Earley Justin D, Johnson Justin C, Hermosilla-Palacios M Alejandra, Blackburn Jeffrey L

机构信息

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

Department of Chemistry, University of Colorado-Boulder, Boulder, Colorado 80309, United States.

出版信息

ACS Nano. 2024 Mar 19;18(11):8190-8198. doi: 10.1021/acsnano.3c12179. Epub 2024 Mar 11.

Abstract

Innovation in optoelectronic semiconductor devices is driven by a fundamental understanding of how to move charges and/or excitons (electron-hole pairs) in specified directions for doing useful work, e.g., for making fuels or electricity. The diverse and tunable electronic and optical properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs) and one-dimensional (1D) semiconducting single-walled carbon nanotubes (s-SWCNTs) make them good quantum confined model systems for fundamental studies of charge and exciton transfer across heterointerfaces. Here we demonstrate a mixed-dimensionality 2D/1D/2D MoS/SWCNT/WSe heterotrilayer that enables ultrafast photoinduced exciton dissociation, followed by charge diffusion and slow recombination. Importantly, the heterotrilayer serves to double charge carrier yield relative to a MoS/SWCNT heterobilayer and also demonstrates the ability of the separated charges to overcome interlayer exciton binding energies to diffuse from one TMDC/SWCNT interface to the other 2D/1D interface, resulting in Coulombically unbound charges. Interestingly, the heterotrilayer also appears to enable efficient hole transfer from SWCNTs to WSe, which is not observed in the identically prepared WSe/SWCNT heterobilayer, suggesting that increasing the complexity of nanoscale trilayers may modify dynamic pathways. Our work suggests "mixed-dimensionality" TMDC/SWCNT based heterotrilayers as both interesting model systems for mechanistic studies of carrier dynamics at nanoscale heterointerfaces and for potential applications in advanced optoelectronic systems.

摘要

光电子半导体器件的创新是由对如何在特定方向上移动电荷和/或激子(电子-空穴对)以进行有用工作(例如制造燃料或电力)的基本理解所驱动的。二维(2D)过渡金属二硫属化物(TMDC)和一维(1D)半导体单壁碳纳米管(s-SWCNT)具有多样且可调节的电子和光学性质,这使其成为用于研究电荷和激子在异质界面间转移的基础研究的良好量子受限模型系统。在此,我们展示了一种混合维度的2D/1D/2D MoS/SWCNT/WSe异质三层结构,它能够实现超快的光致激子解离,随后是电荷扩散和缓慢复合。重要的是,相对于MoS/SWCNT异质双层,该异质三层结构使电荷载流子产率提高了一倍,并且还证明了分离出的电荷能够克服层间激子结合能,从一个TMDC/SWCNT界面扩散到另一个2D/1D界面,从而产生库仑未束缚电荷。有趣的是,该异质三层结构似乎还能实现从SWCNT到WSe的高效空穴转移,而在相同制备的WSe/SWCNT异质双层中未观察到这种情况,这表明增加纳米级三层结构的复杂性可能会改变动态路径。我们的工作表明,基于“混合维度”TMDC/SWCNT的异质三层结构既是用于纳米级异质界面载流子动力学机理研究的有趣模型系统,也具有在先进光电子系统中的潜在应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验