Suppr超能文献

身体和尾部辅助俯仰控制有助于澳大利亚鬣蜥的两足运动。

Body and tail-assisted pitch control facilitates bipedal locomotion in Australian agamid lizards.

机构信息

School of Science and Engineering, University of Sunshine Coast, Sippy Downs, Queensland 4556, Australia

School of Biological Sciences, The University of Queensland, Queensland 4072, Australia.

出版信息

J R Soc Interface. 2018 Sep 26;15(146):20180276. doi: 10.1098/rsif.2018.0276.

Abstract

Certain lizards are known to run bipedally. Modelling studies suggest bipedalism in lizards may be a consequence of a caudal shift in the body centre of mass, combined with quick bursts of acceleration, causing a torque moment at the hip lifting the front of the body. However, some lizards appear to run bipedally sooner and for longer than expected from these models, suggesting positive selection for bipedal locomotion. While differences in morphology may contribute to bipedal locomotion, changes in kinematic variables may also contribute to extended bipedal sequences, such as changes to the body orientation, tail lifting and changes to the ground reaction force profile. We examined these mechanisms among eight Australian agamid lizards. Our analysis revealed that angular acceleration of the trunk about the hip, and of the tail about the hip were both important predictors of extended bipedal running, along with increased temporal asymmetry of the ground reaction force profile. These results highlight important dynamic movements during locomotion, which may not only stabilize bipedal strides, but also to de-stabilize quadrupedal strides in agamid lizards, in order to temporarily switch to, and extend a bipedal sequence.

摘要

某些蜥蜴被发现可以用两条腿奔跑。建模研究表明,蜥蜴的两足运动可能是身体质心在尾部发生转移的结果,加上快速的加速爆发,在臀部产生一个抬起身体前部的扭矩。然而,一些蜥蜴似乎比这些模型预期的更早、更长时间地以两足形式奔跑,这表明两足运动是一种积极的选择。虽然形态上的差异可能有助于两足运动,但运动学变量的变化也可能有助于延长两足序列,例如改变身体姿势、抬起尾巴和改变地面反作用力分布。我们在 8 种澳大利亚鬣蜥中研究了这些机制。我们的分析表明,躯干相对于臀部的角加速度和尾巴相对于臀部的角加速度都是延长两足奔跑的重要预测因素,同时地面反作用力分布的时间不对称性也增加了。这些结果突出了运动过程中的重要动态运动,这些运动不仅可以稳定两足步幅,还可以使鬣蜥的四足步幅不稳定,从而暂时切换到并延长两足序列。

相似文献

1
Body and tail-assisted pitch control facilitates bipedal locomotion in Australian agamid lizards.
J R Soc Interface. 2018 Sep 26;15(146):20180276. doi: 10.1098/rsif.2018.0276.
2
Why go bipedal? Locomotion and morphology in Australian agamid lizards.
J Exp Biol. 2008 Jul;211(Pt 13):2058-65. doi: 10.1242/jeb.018044.
3
In search of the pitching momentum that enables some lizards to sustain bipedal running at constant speeds.
J R Soc Interface. 2013 May 8;10(84):20130241. doi: 10.1098/rsif.2013.0241. Print 2013 Jul 6.
4
Bipedalism in lizards: whole-body modelling reveals a possible spandrel.
Philos Trans R Soc Lond B Biol Sci. 2003 Sep 29;358(1437):1525-33. doi: 10.1098/rstb.2003.1342.
5
The evolution of bipedal running in lizards suggests a consequential origin may be exploited in later lineages.
Evolution. 2014 Aug;68(8):2171-83. doi: 10.1111/evo.12447. Epub 2014 Jun 3.
6
Forelimb position affects facultative bipedal locomotion in lizards.
J Exp Biol. 2018 Dec 12;221(Pt 24):jeb185975. doi: 10.1242/jeb.185975.
7
Effects of body movement on yaw motion in bipedal running lizard by dynamic simulation.
PLoS One. 2020 Dec 31;15(12):e0243798. doi: 10.1371/journal.pone.0243798. eCollection 2020.
8
Bipedal gait versatility in the Japanese macaque (Macaca fuscata).
J Hum Evol. 2018 Dec;125:2-14. doi: 10.1016/j.jhevol.2018.09.001. Epub 2018 Sep 28.
9
Bipedal locomotion in Tropidurus torquatus (Wied, 1820) and Liolaemus lutzae Mertens, 1938.
Braz J Biol. 2008 Aug;68(3):649-55. doi: 10.1590/s1519-69842008000300024.
10
Bipedal and quadrupedal locomotion in chimpanzees.
J Hum Evol. 2014 Jan;66:64-82. doi: 10.1016/j.jhevol.2013.10.002. Epub 2013 Dec 5.

引用本文的文献

1
Complex In Vivo Motion of the Bovine Tail Provides Unique Insights Into Intervertebral Disc Adaptation.
JOR Spine. 2025 Jun 17;8(2):e70084. doi: 10.1002/jsp2.70084. eCollection 2025 Jun.
3
Quantitative biomechanical assessment of locomotor capabilities of the stem archosaur .
R Soc Open Sci. 2023 Jan 25;10(1):221195. doi: 10.1098/rsos.221195. eCollection 2023 Jan.
4
Predictive simulations of running gait reveal a critical dynamic role for the tail in bipedal dinosaur locomotion.
Sci Adv. 2021 Sep 24;7(39):eabi7348. doi: 10.1126/sciadv.abi7348. Epub 2021 Sep 22.
5
Mechanisms for Mid-Air Reorientation Using Tail Rotation in Gliding Geckos.
Integr Comp Biol. 2021 Sep 8;61(2):478-490. doi: 10.1093/icb/icab132.

本文引用的文献

1
Aerial maneuvers of leaping lemurs: The physics of whole-body rotations while airborne.
Am J Primatol. 1988;16(4):291-303. doi: 10.1002/ajp.1350160402.
2
Lizards ran bipedally 110 million years ago.
Sci Rep. 2018 Feb 15;8(1):2617. doi: 10.1038/s41598-018-20809-z.
3
A quantitative evaluation of physical and digital approaches to centre of mass estimation.
J Anat. 2017 Nov;231(5):758-775. doi: 10.1111/joa.12667. Epub 2017 Aug 15.
4
The functional origin of dinosaur bipedalism: Cumulative evidence from bipedally inclined reptiles and disinclined mammals.
J Theor Biol. 2017 May 7;420:1-7. doi: 10.1016/j.jtbi.2017.02.032. Epub 2017 Feb 27.
5
The evolution of bipedal running in lizards suggests a consequential origin may be exploited in later lineages.
Evolution. 2014 Aug;68(8):2171-83. doi: 10.1111/evo.12447. Epub 2014 Jun 3.
6
In search of the pitching momentum that enables some lizards to sustain bipedal running at constant speeds.
J R Soc Interface. 2013 May 8;10(84):20130241. doi: 10.1098/rsif.2013.0241. Print 2013 Jul 6.
7
Tail-assisted pitch control in lizards, robots and dinosaurs.
Nature. 2012 Jan 4;481(7380):181-4. doi: 10.1038/nature10710.
8
Performance and three-dimensional kinematics of bipedal lizards during obstacle negotiation.
J Exp Biol. 2012 Jan 15;215(Pt 2):247-55. doi: 10.1242/jeb.061135.
10
Getting up to speed: acceleration strategies in the Florida scrub lizard, Sceloporus woodi.
Physiol Biochem Zool. 2010 Jul-Aug;83(4):643-53. doi: 10.1086/653476.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验