Suppr超能文献

探索 G 蛋白偶联受体激活的自由能景观。

Exploring the free-energy landscape of GPCR activation.

机构信息

Department of Chemistry, University of Southern California, Los Angeles, CA 90089.

Department of Physiology and Membrane Biology, University of California, Davis, CA 95616.

出版信息

Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10327-10332. doi: 10.1073/pnas.1810316115. Epub 2018 Sep 26.

Abstract

G-protein-coupled receptors (GPCRs) are a large group of membrane-bound receptor proteins that are involved in a plethora of diverse processes (e.g., vision, hormone response). In mammals, and particularly in humans, GPCRs are involved in many signal transduction pathways and, as such, are heavily studied for their immense pharmaceutical potential. Indeed, a large fraction of drugs target various GPCRs, and drug-development is often aimed at GPCRs. Therefore, understanding the activation of GPCRs is a challenge of major importance both from fundamental and practical considerations. And yet, despite the remarkable progress in structural understanding, we still do not have a translation of the structural information to an energy-based picture. Here we use coarse-grained (CG) modeling to chart the free-energy landscape of the activation process of the β-2 adrenergic receptor (βAR) as a representative GPCR. The landscape provides the needed tool for analyzing the processes that lead to activation of the receptor upon binding of the ligand (adrenaline) while limiting constitutive activation. Our results pave the way to better understand the biological mechanisms of action of the βAR and GPCRs, from a physical chemistry point of view rather than simply by observing the receptor's behavior physiologically.

摘要

G 蛋白偶联受体(GPCRs)是一大类膜结合受体蛋白,参与了众多不同的过程(例如视觉、激素反应)。在哺乳动物中,特别是在人类中,GPCRs 参与了许多信号转导途径,因此,由于其巨大的药物潜力,它们受到了广泛的研究。事实上,很大一部分药物针对各种 GPCRs,药物开发通常针对 GPCRs。因此,从基础和实际考虑来看,理解 GPCR 的激活是一个非常重要的挑战。然而,尽管在结构理解方面取得了显著进展,但我们仍然没有将结构信息转化为基于能量的图像。在这里,我们使用粗粒化(CG)建模来绘制 β-2 肾上腺素能受体(βAR)作为代表性 GPCR 的激活过程的自由能景观。该景观为分析配体(肾上腺素)结合导致受体激活的过程提供了必要的工具,同时限制了组成性激活。我们的结果为从物理化学的角度而不是仅仅从生理学上观察受体的行为来更好地理解 βAR 和 GPCR 的生物学作用机制铺平了道路。

相似文献

1
Exploring the free-energy landscape of GPCR activation.探索 G 蛋白偶联受体激活的自由能景观。
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10327-10332. doi: 10.1073/pnas.1810316115. Epub 2018 Sep 26.
3
5
Conformational complexity of G-protein-coupled receptors.G蛋白偶联受体的构象复杂性
Trends Pharmacol Sci. 2007 Aug;28(8):397-406. doi: 10.1016/j.tips.2007.06.003. Epub 2007 Jul 13.
6
Structural mechanism of G protein activation by G protein-coupled receptor.G蛋白偶联受体激活G蛋白的结构机制。
Eur J Pharmacol. 2015 Sep 15;763(Pt B):214-22. doi: 10.1016/j.ejphar.2015.05.016. Epub 2015 May 14.
10
Drug design strategies for targeting G-protein-coupled receptors.靶向G蛋白偶联受体的药物设计策略。
Chembiochem. 2002 Oct 4;3(10):928-44. doi: 10.1002/1439-7633(20021004)3:10<928::AID-CBIC928>3.0.CO;2-5.

引用本文的文献

3
7
Hidden water's influence on rhodopsin activation.隐匿水对视紫红质激活的影响。
Biophys J. 2024 Dec 17;123(24):4167-4179. doi: 10.1016/j.bpj.2024.11.012. Epub 2024 Nov 16.
8
Exploring the constitutive activation mechanism of the class A orphan GPR20.探索A类孤儿GPR20的组成性激活机制。
Acta Pharmacol Sin. 2025 Feb;46(2):500-511. doi: 10.1038/s41401-024-01385-7. Epub 2024 Sep 10.

本文引用的文献

1
Structure of the µ-opioid receptor-G protein complex.μ-阿片受体- G 蛋白复合物的结构。
Nature. 2018 Jun;558(7711):547-552. doi: 10.1038/s41586-018-0219-7. Epub 2018 Jun 13.
3
6
Single-Molecule Imaging of GPCR Interactions.GPCR 相互作用的单分子成像。
Trends Pharmacol Sci. 2018 Feb;39(2):109-122. doi: 10.1016/j.tips.2017.10.010. Epub 2017 Nov 17.
8
Discovery of new GPCR ligands to illuminate new biology.发现新的G蛋白偶联受体配体以揭示新生物学。
Nat Chem Biol. 2017 Nov;13(11):1143-1151. doi: 10.1038/nchembio.2490. Epub 2017 Oct 18.
9
Protein Structure Modeling with MODELLER.使用MODELLER进行蛋白质结构建模。
Methods Mol Biol. 2017;1654:39-54. doi: 10.1007/978-1-4939-7231-9_4.
10
Structural Basis for G Protein-Coupled Receptor Activation.G蛋白偶联受体激活的结构基础。
Biochemistry. 2017 Oct 24;56(42):5628-5634. doi: 10.1021/acs.biochem.7b00747. Epub 2017 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验