Suppr超能文献

G蛋白偶联受体——最新进展

G protein-coupled receptors--recent advances.

作者信息

Latek Dorota, Modzelewska Anna, Trzaskowski Bartosz, Palczewski Krzysztof, Filipek Sławomir

机构信息

Biomodeling Laboratory, International Institute of Molecular and Cell Biology, Warsaw, Poland.

出版信息

Acta Biochim Pol. 2012;59(4):515-29. Epub 2012 Dec 18.

Abstract

The years 2000 and 2007 witnessed milestones in current understanding of G protein-coupled receptor (GPCR) structural biology. In 2000 the first GPCR, bovine rhodopsin, was crystallized and the structure was solved, while in 2007 the structure of β(2)-adrenergic receptor, the first GPCR with diffusible ligands, was determined owing to advances in microcrystallization and an insertion of the fast-folding lysozyme into the receptor. In parallel with those crystallographic studies, the biological and biochemical characterization of GPCRs has advanced considerably because those receptors are molecular targets for many of currently used drugs. Therefore, the mechanisms of activation and signal transduction to the cell interior deduced from known GPCRs structures are of the highest importance for drug discovery. These proteins are the most diversified membrane receptors encoded by hundreds of genes in our genome. They participate in processes responsible for vision, smell, taste and neuronal transmission in response to photons or binding of ions, hormones, peptides, chemokines and other factors. Although the GPCRs share a common seven-transmembrane α-helical bundle structure their binding sites can accommodate thousands of different ligands. The ligands, including agonists, antagonists or inverse agonists change the structure of the receptor. With bound agonists they can form a complex with a suitable G protein, be phosphorylated by kinases or bind arrestin. The discovered signaling cascades invoked by arrestin independently of G proteins makes the GPCR activating scheme more complex such that a ligand acting as an antagonist for G protein signaling can also act as an agonist in arrestin-dependent signaling. Additionally, the existence of multiple ligand-dependent partial activation states as well as dimerization of GPCRs result in a 'microprocessor-like' action of these receptors rather than an 'on-off' switch as was commonly believed only a decade ago.

摘要

2000年和2007年见证了当前对G蛋白偶联受体(GPCR)结构生物学理解的里程碑。2000年,首个GPCR——牛视紫红质被结晶并解析出结构;而在2007年,首个具有可扩散配体的GPCR——β₂肾上腺素能受体的结构得以确定,这得益于微晶化技术的进步以及将快速折叠的溶菌酶插入该受体。与这些晶体学研究同步进行的是,GPCR的生物学和生物化学特性研究也取得了显著进展,因为这些受体是目前许多常用药物的分子靶点。因此,从已知的GPCR结构推导出来的激活机制以及向细胞内部的信号转导对于药物研发至关重要。这些蛋白质是我们基因组中由数百个基因编码的最多样化的膜受体。它们参与负责视觉、嗅觉、味觉以及响应光子或离子、激素、肽、趋化因子和其他因子结合的神经传递过程。尽管GPCR具有共同的七跨膜α螺旋束结构,但其结合位点可容纳数千种不同的配体。这些配体,包括激动剂、拮抗剂或反向激动剂,会改变受体的结构。与结合的激动剂一起,它们可以与合适的G蛋白形成复合物,被激酶磷酸化或结合抑制蛋白。发现的由抑制蛋白独立于G蛋白引发的信号级联反应使GPCR激活机制更加复杂,以至于一种作为G蛋白信号拮抗剂的配体也可以在抑制蛋白依赖性信号传导中充当激动剂。此外,多种配体依赖性部分激活状态的存在以及GPCR的二聚化导致这些受体具有“微处理器样”作用,而不是像仅仅在十年前普遍认为的那样是“开-关”开关。

相似文献

1
G protein-coupled receptors--recent advances.
Acta Biochim Pol. 2012;59(4):515-29. Epub 2012 Dec 18.
2
Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
J Mol Biol. 2008 Oct 3;382(2):539-55. doi: 10.1016/j.jmb.2008.06.084. Epub 2008 Jul 7.
3
X-ray structure breakthroughs in the GPCR transmembrane region.
Biochem Pharmacol. 2009 Jul 1;78(1):11-20. doi: 10.1016/j.bcp.2009.02.012. Epub 2009 Feb 27.
4
The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin.
Curr Opin Cell Biol. 2014 Apr;27:136-43. doi: 10.1016/j.ceb.2014.01.008. Epub 2014 Feb 17.
5
Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
Biochemistry. 2008 Oct 21;47(42):11013-23. doi: 10.1021/bi800891r. Epub 2008 Sep 27.
6
Relevance of rhodopsin studies for GPCR activation.
Biochim Biophys Acta. 2014 May;1837(5):674-82. doi: 10.1016/j.bbabio.2013.09.002. Epub 2013 Sep 13.
7
A structural snapshot of the rhodopsin-arrestin complex.
FEBS J. 2016 Mar;283(5):816-21. doi: 10.1111/febs.13561. Epub 2015 Nov 7.
8
Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study.
J Chem Inf Model. 2015 May 26;55(5):1045-61. doi: 10.1021/acs.jcim.5b00066. Epub 2015 May 1.
9
Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor.
J Mol Biol. 2011 Dec 9;414(4):611-23. doi: 10.1016/j.jmb.2011.10.015. Epub 2011 Oct 20.
10
Understanding the GPCR biased signaling through G protein and arrestin complex structures.
Curr Opin Struct Biol. 2017 Aug;45:150-159. doi: 10.1016/j.sbi.2017.05.004. Epub 2017 May 27.

引用本文的文献

1
The role of CXCL9, CXCL10, and CXCL13 chemokines in patients with Sjögren's syndrome.
Clin Rheumatol. 2025 Apr;44(4):1635-1642. doi: 10.1007/s10067-025-07367-2. Epub 2025 Feb 24.
2
Implications of nociceptor receptors and immune modulation: emerging therapeutic targets for autoimmune diseases.
Inflammopharmacology. 2025 Mar;33(3):959-977. doi: 10.1007/s10787-025-01653-w. Epub 2025 Feb 16.
3
Magnetogenetics as a promising tool for controlling cellular signaling pathways.
J Nanobiotechnology. 2024 Jun 10;22(1):327. doi: 10.1186/s12951-024-02616-z.
4
Novel GPR18 Ligands in Rodent Pharmacological Tests: Effects on Mood, Pain, and Eating Disorders.
Int J Mol Sci. 2023 May 20;24(10):9046. doi: 10.3390/ijms24109046.
5
CCR6 as a Potential Target for Therapeutic Antibodies for the Treatment of Inflammatory Diseases.
Antibodies (Basel). 2023 Apr 20;12(2):30. doi: 10.3390/antib12020030.
7
Translational neuronal ensembles: Neuronal microcircuits in psychology, physiology, pharmacology and pathology.
Front Syst Neurosci. 2022 Aug 24;16:979680. doi: 10.3389/fnsys.2022.979680. eCollection 2022.
8
Regulative role of the CXCL13-CXCR5 axis in the tumor microenvironment.
Precis Clin Med. 2018 Jun;1(1):49-56. doi: 10.1093/pcmedi/pby006. Epub 2018 Jun 12.
9
Local modulation by presynaptic receptors controls neuronal communication and behaviour.
Nat Rev Neurosci. 2022 Apr;23(4):191-203. doi: 10.1038/s41583-022-00561-0. Epub 2022 Feb 28.
10
G proteins: binary switches in health and disease.
Cent Eur J Immunol. 2020;45(3):364-367. doi: 10.5114/ceji.2020.101271. Epub 2020 Nov 1.

本文引用的文献

1
Conformation of receptor-bound visual arrestin.
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18407-12. doi: 10.1073/pnas.1216304109. Epub 2012 Oct 22.
2
Structure of the chemokine receptor CXCR1 in phospholipid bilayers.
Nature. 2012 Nov 29;491(7426):779-83. doi: 10.1038/nature11580. Epub 2012 Oct 21.
3
Structure of the agonist-bound neurotensin receptor.
Nature. 2012 Oct 25;490(7421):508-13. doi: 10.1038/nature11558. Epub 2012 Oct 10.
5
Structural basis for allosteric regulation of GPCRs by sodium ions.
Science. 2012 Jul 13;337(6091):232-6. doi: 10.1126/science.1219218.
6
Structure of the δ-opioid receptor bound to naltrindole.
Nature. 2012 May 16;485(7398):400-4. doi: 10.1038/nature11111.
7
Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic.
Nature. 2012 May 16;485(7398):395-9. doi: 10.1038/nature11085.
9
Structural transitions of transmembrane helix 6 in the formation of metarhodopsin I.
J Phys Chem B. 2012 Sep 6;116(35):10477-89. doi: 10.1021/jp3019183. Epub 2012 May 17.
10
Agonist-bound structures of G protein-coupled receptors.
Curr Opin Struct Biol. 2012 Aug;22(4):482-90. doi: 10.1016/j.sbi.2012.03.007. Epub 2012 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验