AMOLF, Amsterdam, The Netherlands.
Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Leiden, The Netherlands.
Nature. 2018 Sep;561(7724):512-515. doi: 10.1038/s41586-018-0541-0. Epub 2018 Sep 26.
Multi-step pathways-which consist of a sequence of reconfigurations of a structure-are central to the functionality of various natural and artificial systems. Such pathways execute autonomously in self-guided processes such as protein folding and self-assembly, but have previously required external control to execute in macroscale mechanical systems, provided by, for example, actuators in robotics or manual folding in origami. Here we demonstrate shape-changing, macroscale mechanical metamaterials that undergo self-guided, multi-step reconfiguration in response to global uniform compression. We avoid the need for external control by using metamaterials that are made purely of passive components. The design of the metamaterials combines nonlinear mechanical elements with a multimodal architecture that enables a sequence of topological reconfigurations caused by the formation of internal self-contacts between the elements of the metamaterial. We realize the metamaterials by using computer-controlled water-jet cutting of flexible materials, and show that the multi-step pathway and final configuration can be controlled by rational design of the nonlinear mechanical elements. We also demonstrate that the self-contacts suppress errors in the pathway. Finally, we create hierarchical architectures to extend the number of distinct reconfiguration steps. Our work establishes general principles for designing mechanical pathways, opening up new avenues for self-folding media, pluripotent materials and pliable devices in areas such as stretchable electronics and soft robotics.
多步路径——由结构的一系列重新配置组成——是各种自然和人工系统功能的核心。这些路径在蛋白质折叠和自组装等自我引导的过程中自主执行,但以前需要外部控制才能在宏观机械系统中执行,例如机器人中的执行器或折纸中的手动折叠。在这里,我们展示了形状变化的宏观机械超材料,它们在受到全局均匀压缩时会自行进行多步重新配置。我们通过使用完全由无源元件制成的超材料来避免外部控制的需要。超材料的设计结合了非线性机械元件和多模态结构,使超材料元件之间形成内部自接触而导致一系列拓扑重配置。我们通过使用计算机控制的柔性材料水射流切割来实现超材料,并表明可以通过合理设计非线性机械元件来控制多步路径和最终配置。我们还表明,自接触抑制了路径中的误差。最后,我们创建了分层结构以扩展不同的重配置步骤的数量。我们的工作为设计机械路径奠定了一般原则,为可伸缩电子产品和软机器人等领域的自折叠介质、多能材料和柔韧设备开辟了新途径。