Chen Chen, Zhang Yanhu, Zheng Yi, Zhang Yi, Liu Hongyi, Wu Jiang, Yang Liang, Yang Zhengbao
School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, China.
Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang, 212013, China.
Adv Mater. 2025 Aug;37(32):e2500466. doi: 10.1002/adma.202500466. Epub 2025 Jun 4.
Topology is fundamental in determining the properties and functions of biological piezoelectric materials by influencing service performances across multiple scales, from nanoscale molecular arrangements to macroscopic assembly structures. At each scale, topology governs electrical, mechanical, and biological behaviors, facilitating multifunctional integration and multi-field coupling advances. Recent progress demonstrates the potential of topological optimization to enhance piezoelectric coefficients and enable complex functionalities. Strategies such as multi-scale design, machine learning-guided optimization, and precision fabrication techniques are being explored to address persistent challenges, including limited energy conversion efficiency, long-term stability, and biocompatibility. Critical applications include health monitoring, biosensing, energy harvesting, and disease treatment, highlighting opportunities and unresolved technical bottlenecks. Future research directions are discussed to present theoretical insights and practical pathways to the development of biological piezoelectric materials.
拓扑结构对于确定生物压电材料的性质和功能至关重要,它通过影响从纳米级分子排列到宏观组装结构的多个尺度的服务性能来实现。在每个尺度上,拓扑结构都控制着电学、力学和生物学行为,促进多功能集成和多场耦合的发展。最近的进展表明了拓扑优化在提高压电系数和实现复杂功能方面的潜力。人们正在探索多尺度设计、机器学习引导的优化和精密制造技术等策略,以应对包括能量转换效率有限、长期稳定性和生物相容性在内的持续挑战。关键应用包括健康监测、生物传感、能量收集和疾病治疗,突出了机遇和未解决的技术瓶颈。本文讨论了未来的研究方向,为生物压电材料的发展提供理论见解和实际途径。