Sonderer Christa M, Chen Nan-Kuei
Department of Biomedical Engineering, University of Arizona, Tucson, AZ.
Yale J Biol Med. 2018 Sep 21;91(3):207-214. eCollection 2018 Sep.
MRI parametric mapping, including T2 mapping, can quantitatively characterize tissue properties and is an important MRI procedure in biomedical research and studies of diseases [1-3]. However, the accuracy, quality, and signal-to-noise ratio (SNR) of MRI parametric mapping may be negatively impacted by Rician noise in multi-contrast MRI data [4]. As such, it is important to develop a post-processing method to minimize the negative impact of Rician noise. In this study, we report a new parametric-contrast-matched principal component analysis (PCM-PCA) denoising method that involves 1) identifying voxels with similar T2 decay characteristics and 2) using the principal component analysis (PCA) to denoise multi-contrast MRI data along the echo time (TE) dimension. We additionally evaluated the effects of integrating Rician bias correction and the new PCM-PCA method. In this study, we mathematically added Rician noise at various levels to human brain MRI data and performed different combinations of denoising and Rician bias correction on the magnitude-valued images. We found that MRI denoising using the PCM-PCA method resulted in improved image quality, SNR, and accuracy of the measured T2 relaxation time constants. Additionally, we found that for data with low SNR (., 1.5 or lower), Rician bias correction further improved image quality and T2 mapping accuracy. In summary, our experimental results demonstrated that the new PCM-PCA denoising method and Rician bias correction adequately improve multi-contrast MRI quality and T2 parametric mapping accuracy.
磁共振成像参数映射,包括T2映射,能够定量表征组织特性,是生物医学研究和疾病研究中的一项重要磁共振成像程序[1-3]。然而,多对比度磁共振成像数据中的莱斯噪声可能会对磁共振成像参数映射的准确性、质量和信噪比(SNR)产生负面影响[4]。因此,开发一种后处理方法以最小化莱斯噪声的负面影响很重要。在本研究中,我们报告了一种新的参数对比度匹配主成分分析(PCM-PCA)去噪方法,该方法包括1)识别具有相似T2衰减特征的体素,以及2)使用主成分分析(PCA)沿回波时间(TE)维度对多对比度磁共振成像数据进行去噪。我们还评估了整合莱斯偏差校正和新的PCM-PCA方法的效果。在本研究中,我们在不同水平上对人脑磁共振成像数据进行数学添加莱斯噪声,并对幅度值图像进行不同组合的去噪和莱斯偏差校正。我们发现,使用PCM-PCA方法进行磁共振成像去噪可提高图像质量、信噪比以及测量的T2弛豫时间常数的准确性。此外,我们发现对于低信噪比(即1.5或更低)的数据,莱斯偏差校正可进一步提高图像质量和T2映射准确性。总之,我们的实验结果表明,新的PCM-PCA去噪方法和莱斯偏差校正充分提高了多对比度磁共振成像质量和T2参数映射准确性。