Suppr超能文献

一种用于磁共振图像中基于非局部总变分的莱斯噪声降低的两步优化方法。

A two-step optimization approach for nonlocal total variation-based Rician noise reduction in magnetic resonance images.

作者信息

Liu Ryan Wen, Shi Lin, Yu Simon C H, Wang Defeng

机构信息

Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong.

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong and Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong.

出版信息

Med Phys. 2015 Sep;42(9):5167-87. doi: 10.1118/1.4927793.

Abstract

PURPOSE

Magnetic resonance imaging (MRI) often suffers from apparent noise during image acquisition and transmission. The degraded data can easily result in nonrobust postprocessing steps in medical image analysis. The purpose of this study is to eliminate noise effects and improve image quality using a nonlocal feature-preserving denoising method.

METHODS

From a statistical point of view, the magnitude MR images in the presence of noise are usually modeled using a Rician distribution. In the maximum a posteriori framework, a nonlocal total variation (NLTV)-based feature-preserving MRI Rician denoising model is proposed by taking full advantage of high degree of selfsimilarity and redundancy within MR images. However, the nonconvex data-fidelity term and nonsmooth NLTV regularizer make the denoising problem difficult to solve. To guarantee solution stability, a piecewise convex function is first introduced to approximate the nonconvex version. In what follows, a two-step optimization approach is developed to solve the resulting convex denoising model. In each step of this approach, the subproblem can be efficiently solved using existing optimization algorithms. The method performance is evaluated using synthetic and clinical MRI data sets as well as one diffusion tensor MRI (DTI) data set. Extensive experiments are conducted to compare the proposed method with several state-of-the-art denoising methods.

RESULTS

For the synthetic and clinical MRI data sets, the proposed method considerably outperformed other competing denoising methods in terms of both quantitative and visual quality evaluations. It was capable of effectively removing noise in MR images and enhancing tissue characterization. The advantage of the proposed method became more significant as the noise level increased. For the DTI data set, compared with other denoising methods, the proposed method not only preserved the apparent diffusion coefficient but also generated more regular fractional anisotropy (FA) and color-coded FA without obvious visual artifacts.

CONCLUSIONS

This study describes and validates a nonlocal feature-preserving method for Rician noise reduction on synthetic and real MRI data sets. By exploiting the feature-preserving capability of NLTV regularizer, the proposed method maintains a good balance between noise reduction and fine detail preservation. The experiments have demonstrated a huge potential of the proposed method for routine clinical practice.

摘要

目的

磁共振成像(MRI)在图像采集和传输过程中常常会出现明显噪声。数据质量下降容易导致医学图像分析中的后处理步骤不稳定。本研究的目的是使用一种非局部特征保留去噪方法来消除噪声影响并提高图像质量。

方法

从统计学角度来看,存在噪声时的幅度MR图像通常采用莱斯分布建模。在最大后验框架下,通过充分利用MR图像内部的高度自相似性和冗余性,提出了一种基于非局部总变分(NLTV)的特征保留MRI莱斯去噪模型。然而,非凸的数据保真项和不光滑的NLTV正则化器使得去噪问题难以求解。为了保证求解的稳定性,首先引入一个分段凸函数来逼近非凸形式。接下来,开发了一种两步优化方法来求解得到的凸去噪模型。在该方法的每一步中,子问题都可以使用现有的优化算法高效求解。使用合成和临床MRI数据集以及一个扩散张量MRI(DTI)数据集对该方法的性能进行评估。进行了广泛的实验,将所提出的方法与几种先进的去噪方法进行比较。

结果

对于合成和临床MRI数据集,在定量和视觉质量评估方面,所提出的方法均显著优于其他竞争去噪方法。它能够有效去除MR图像中的噪声并增强组织特征。随着噪声水平的增加,所提出方法的优势变得更加明显。对于DTI数据集,与其他去噪方法相比,所提出的方法不仅保留了表观扩散系数,还生成了更规则的分数各向异性(FA)和彩色编码的FA,且无明显视觉伪影。

结论

本研究描述并验证了一种用于合成和真实MRI数据集上减少莱斯噪声的非局部特征保留方法。通过利用NLTV正则化器的特征保留能力,所提出的方法在降噪和细节保留之间保持了良好的平衡。实验证明了所提出方法在常规临床实践中的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验