Twaruschek Krisztian, Spörhase Pia, Michlmayr Herbert, Wiesenberger Gerlinde, Adam Gerhard
Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
Front Microbiol. 2018 Sep 11;9:1954. doi: 10.3389/fmicb.2018.01954. eCollection 2018.
In filamentous fungi such as , disruption of multiple genes of interest in the same strain (e.g., to test for redundant gene function) is a difficult task due to the limited availability of reliable selection markers. We have created a series of transformation vectors that allow antibiotic-based selection of transformants and subsequent negative selection for marker removal using thymidine kinase fusions combined with the Cre system. The fusion genes contain commonly used C-terminal drug resistance markers, either (G418), (nourseothricin), or (hygromycin B). These resistance genes are fused to the sequence encoding virus thymidine kinase (HSVtk). Despite the presence of the 1 kb HSVtk gene (about ∼30% increase in total marker size), there is only a slight reduction in transformation efficiency on a molar basis. The fusion genes expressed under the pyruvate kinase (PKI) promoter also confer antibiotic resistance in , allowing straightforward construction of disruption plasmids. For removal of the flanked resistance cassettes, protoplasts of transformants are directly treated with purified Cre recombinase protein. Loss of the HSVtk containing cassette is selected by restoration of resistance to 5-fluoro-2-deoxyuridine (FdU). As a proof of principle, we demonstrated the efficiency of the HSVtk-based marker removal in by reversing the disruption phenotype of the gene responsible for production of the red pigment aurofusarin. We first disrupted the gene via integration of the -flanked HSVtk cassette into the promoter or the first intron, thereby generating transformants with a white mycelium phenotype. Using Cre recombinase and FdU, the selection marker was subsequently removed, and the resulting transformants regained red pigmentation despite the remaining site. We also found that it is possible to remove several unselected -flanked cassettes with a single Cre protein treatment, as long as one of them contains a negative selectable HSVtk cassette. The negative selection system can also be used to introduce allele swaps into strains without leaving marker sequences, by first disrupting the gene of interest and then complementing the deletion with genomic DNA containing a different allele.
在诸如 这样的丝状真菌中,由于可靠选择标记的可用性有限,在同一菌株中破坏多个感兴趣的基因(例如,用于测试冗余基因功能)是一项艰巨的任务。我们创建了一系列转化载体,这些载体允许基于抗生素选择转化体,并随后使用胸苷激酶融合与Cre系统进行标记去除的负选择。融合基因包含常用的C端耐药标记,即 (潮霉素B)、 (诺尔丝菌素)或 (G418)。这些抗性基因与编码 病毒胸苷激酶(HSVtk)的序列融合。尽管存在1 kb的HSVtk基因(总标记大小增加约30%),但以摩尔为基础的转化效率仅略有降低。在 丙酮酸激酶(PKI)启动子下表达的融合基因在 中也赋予抗生素抗性,从而允许直接构建破坏质粒。为了去除侧翼的抗性盒,转化体的原生质体直接用纯化的Cre重组酶蛋白处理。通过恢复对5-氟-2-脱氧尿苷(FdU)的抗性来选择含有HSVtk的盒的缺失。作为原理证明,我们通过逆转负责红色色素金耳菌素产生的基因的破坏表型,证明了基于HSVtk的标记去除在 中的效率。我们首先通过将侧翼为 的HSVtk盒整合到启动子或第一个内含子中来破坏 基因,从而产生具有白色菌丝体表型的转化体。使用Cre重组酶和FdU,随后去除选择标记,并且尽管存在剩余的 位点,所得转化体恢复了红色色素沉着。我们还发现,只要其中一个含有负选择的HSVtk盒,用单一的Cre蛋白处理就有可能去除几个未选择的侧翼为 的盒。负选择系统还可用于在不留下标记序列的情况下将等位基因交换引入菌株,方法是首先破坏感兴趣的基因,然后用含有不同等位基因的基因组DNA补充缺失 。