Suppr超能文献

大气 pCO2 影响栓皮栎幼苗叶片的结构和生理特性。

Atmospheric pCO impacts leaf structural and physiological traits in Quercus petraea seedlings.

机构信息

Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany.

Forschungsanstalt für Waldökologie und Forstwirtschaft, Hauptstraße 16, 67705, Trippstadt, Germany.

出版信息

Planta. 2019 Feb;249(2):481-495. doi: 10.1007/s00425-018-3016-5. Epub 2018 Sep 26.

Abstract

Atmospheric p CO impacts Quercus petraea biomass production and cell wall composition of the leaves in favor of cellulose at the expense of lignin, and enhances foliar non-structural carbohydrate levels and sucrose contents in a pCO concentration-dependent manner. Sessile oak (Quercus petraea Liebl.) was grown for ca. half a year from seeds at ambient control (525 ppm), 750, 900, and 1000 ppm atmospheric pCO under controlled conditions. Increasing pCO enhanced biomass production, modified the cell wall composition of the leaves in favor of cellulose at the expense of lignin, and enhanced the foliar non-structural carbohydrate level, in particular the sucrose content; as well as total N content of leaves by increased levels of all major N fractions, i.e., soluble proteins, total amino acids, and structural N. The enhanced total amino acid level was largely due to 2-ketoglutarate and oxalo acetate-derived compounds. Increasing pCO alleviated oxidative stress in the leaves as indicated by reduced HO contents. High in vitro glutathione reductase activity at reduced HO contents suggests enhanced ROS scavenging, but increased lipid peroxidation may also have contributed, as indicated by a negative correlation between malone dialdehyde and HO contents. Almost all these effects were at least partially reversed, when pCO exceeded 750 or 900 ppm. Apparently, the interaction of atmospheric pCO with leaf structural and physiological traits of Q. petraea seedlings is characterized by a dynamic response depending on the pCO level.

摘要

大气 pCO 影响欧洲栓皮栎生物量的产生和叶片细胞壁的组成,有利于纤维素的形成,而不利于木质素的形成,并以 pCO 浓度依赖的方式增加叶片非结构性碳水化合物水平和蔗糖含量。在受控条件下,大约从种子中生长了大约半年的无梗栎(Quercus petraea Liebl.),在大气 pCO 环境对照(525 ppm)、750、900 和 1000 ppm 下生长。增加 pCO 会增强生物量的产生,改变叶片细胞壁的组成,有利于纤维素的形成,而不利于木质素的形成,并增强叶片非结构性碳水化合物水平,特别是蔗糖含量;以及通过增加所有主要 N 分数(即可溶性蛋白质、总氨基酸和结构 N)的水平,增加叶片总 N 含量。增强的总氨基酸水平主要归因于 2-酮戊二酸和草酰乙酸衍生化合物。增加的 pCO 减轻了叶片中的氧化应激,表现为 HO 含量降低。在 HO 含量降低的情况下,高体外谷胱甘肽还原酶活性表明增强了 ROS 清除,但脂质过氧化也可能有贡献,这表明丙二醛和 HO 含量之间存在负相关。当 pCO 超过 750 或 900 ppm 时,几乎所有这些影响都至少部分得到了逆转。显然,大气 pCO 与欧洲栓皮栎幼苗叶片结构和生理特征的相互作用具有取决于 pCO 水平的动态响应的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验