Department of Electrical Engineering , Columbia University , New York , New York 10027 , United States.
Pacific Biosciences , Menlo Park , California 94025 , United States.
ACS Nano. 2018 Oct 23;12(10):9922-9930. doi: 10.1021/acsnano.8b03073. Epub 2018 Oct 3.
Single-point-functionalized carbon-nanotube field-effect transistors (CNTFETs) have been used to sense conformational changes and binding events in protein and nucleic acid structures from intrinsic molecular charge. The key to utilizing these devices as single-molecule sensors is the ability to attach a single probe molecule to an individual device. In contrast, with noncovalent attachment approaches such as those based on van der Waals interactions, covalent attachment approaches generally deliver higher stability but have traditionally been more difficult to control, resulting in low yield. Here, we present a single-point-functionalization method for CNTFET arrays based on electrochemical control of a diazonium reaction to create sp defects, combined with a scalable spin-casting method for fabricating large arrays of devices on arbitrary substrates. Attachment of probe DNA to the functionalized device enables single-molecule detection of DNA hybridization with complementary target, verifying the single-point functionalization. Overall, this method enables single-point defect generation with 80% yield.
单点功能化的碳纳米管场效应晶体管(CNTFET)已被用于从内在分子电荷中感应蛋白质和核酸结构的构象变化和结合事件。利用这些器件作为单分子传感器的关键是能够将单个探针分子附着到单个器件上。相比之下,基于范德华相互作用的非共价附着方法,共价附着方法通常提供更高的稳定性,但传统上更难控制,导致产量低。在这里,我们提出了一种基于电化学控制的叠氮反应在 CNTFET 阵列上进行单点功能化的方法,该方法产生 sp 缺陷,并结合了一种可扩展的旋涂方法,可在任意基底上制造大型器件阵列。将探针 DNA 附着到功能化的器件上,可实现与互补靶标 DNA 杂交的单分子检测,从而验证单点功能化。总的来说,这种方法可以以 80%的产率产生单点缺陷。