Department of Electrical Engineering, Columbia University, New York, New York 10027, USA.
Nat Nanotechnol. 2011 Feb;6(2):126-32. doi: 10.1038/nnano.2010.275. Epub 2011 Jan 23.
Single-molecule measurements of biomolecules can provide information about the molecular interactions and kinetics that are hidden in ensemble measurements. However, there is a requirement for techniques with improved sensitivity and time resolution for use in exploring biomolecular systems with fast dynamics. Here, we report the detection of DNA hybridization at the single-molecule level using a carbon nanotube field-effect transistor. By covalently attaching a single-stranded probe DNA sequence to a point defect in a carbon nanotube, we are able to measure two-level fluctuations in the conductance of the nanotube in the presence of a complementary DNA target. The kinetics of the system are studied as a function of temperature, allowing the measurement of rate constants, melting curves and activation energies for different sequences and target concentrations. The kinetics demonstrate non-Arrhenius behaviour, in agreement with DNA hybridization experiments using fluorescence correlation spectroscopy. This technique is label-free and could be used to probe single-molecule dynamics at microsecond timescales.
单分子测量可以提供关于分子相互作用和动力学的信息,而这些信息隐藏在整体测量中。然而,需要具有更高灵敏度和时间分辨率的技术来探索具有快速动力学的生物分子系统。在这里,我们报告了使用碳纳米管场效应晶体管在单分子水平上检测 DNA 杂交。通过将单链探针 DNA 序列共价连接到碳纳米管中的一个点缺陷上,我们能够在存在互补 DNA 靶标时测量纳米管电导的两能级波动。研究了系统的动力学作为温度的函数,允许测量不同序列和靶标浓度的速率常数、熔解曲线和活化能。动力学表现出非 Arrhenius 行为,与使用荧光相关光谱学的 DNA 杂交实验一致。该技术是无标记的,可以用来探测微秒时间尺度上的单分子动力学。