Suppr超能文献

太赫兹光谱揭示的CuZnSnSe中少数载流子和多数载流子迁移率

Minority and Majority Charge Carrier Mobility in CuZnSnSe revealed by Terahertz Spectroscopy.

作者信息

Hempel Hannes, Hages Charles J, Eichberger Rainer, Repins Ingrid, Unold Thomas

机构信息

Department Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.

Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.

出版信息

Sci Rep. 2018 Sep 27;8(1):14476. doi: 10.1038/s41598-018-32695-6.

Abstract

The mobilities of electrons and holes determine the applicability of any semiconductor, but their individual measurement remains a major challenge. Here, we show that time-resolved terahertz spectroscopy (TRTS) can distinguish the mobilities of minority and majority charge carriers independently of the doping-type and without electrical contacts. To this end, we combine the well-established determination of the sum of electron and hole mobilities from photo-induced THz absorption spectra with mobility-dependent ambipolar modeling of TRTS transients. The method is demonstrated on a polycrystalline CuZnSnSe thin film and reveals a minority (electron) mobility of 128 cm/V-s and a majority (hole) carrier mobility of 7 cm/V-s in the vertical transport direction relevant for light emitting, photovoltaic and solar water splitting devices. Additionally, the TRTS analysis yields an effective bulk carrier lifetime of 4.4 ns, a surface recombination velocity of 6 * 10 cm/s and a doping concentration of ca. 10 cm, thus offering the potential for contactless screen novel optoelectronic materials.

摘要

电子和空穴的迁移率决定了任何半导体的适用性,但其单独测量仍然是一项重大挑战。在此,我们表明时间分辨太赫兹光谱(TRTS)能够独立于掺杂类型且无需电接触来区分少数载流子和多数载流子的迁移率。为此,我们将基于光致太赫兹吸收光谱确定电子和空穴迁移率总和的成熟方法与TRTS瞬态的迁移率相关双极性建模相结合。该方法在多晶CuZnSnSe薄膜上得到验证,揭示了在与发光、光伏和太阳能水分解器件相关的垂直传输方向上,少数(电子)迁移率为128 cm²/V·s,多数(空穴)载流子迁移率为7 cm²/V·s。此外,TRTS分析得出有效体载流子寿命为4.4 ns,表面复合速度为6×10⁵ cm/s,掺杂浓度约为10¹⁵ cm⁻³,从而为非接触筛选新型光电子材料提供了潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43b/6160416/ec9d60cb3ba7/41598_2018_32695_Fig1_HTML.jpg

相似文献

1
Minority and Majority Charge Carrier Mobility in CuZnSnSe revealed by Terahertz Spectroscopy.
Sci Rep. 2018 Sep 27;8(1):14476. doi: 10.1038/s41598-018-32695-6.
4
Bulk charge carrier transport in push-pull type organic semiconductor.
ACS Appl Mater Interfaces. 2014 Dec 10;6(23):20904-12. doi: 10.1021/am505572v. Epub 2014 Nov 21.
5
Unraveling Charge Carriers Generation, Diffusion, and Recombination in Formamidinium Lead Triiodide Perovskite Polycrystalline Thin Film.
J Phys Chem Lett. 2016 Jan 7;7(1):204-10. doi: 10.1021/acs.jpclett.5b02648. Epub 2015 Dec 30.
6
Photogeneration and Mobility of Charge Carriers in Atomically Thin Colloidal InSe Nanosheets Probed by Ultrafast Terahertz Spectroscopy.
J Phys Chem Lett. 2016 Oct 20;7(20):4191-4196. doi: 10.1021/acs.jpclett.6b01835. Epub 2016 Oct 10.
8
The Effects of Doping Density and Temperature on the Optoelectronic Properties of Formamidinium Tin Triiodide Thin Films.
Adv Mater. 2018 Nov;30(44):e1804506. doi: 10.1002/adma.201804506. Epub 2018 Sep 17.
10
Probing Charge Transfer and Hot Carrier Dynamics in Organic Solar Cells with Terahertz Spectroscopy.
Proc SPIE Int Soc Opt Eng. 2016;9856. doi: 10.1117/12.2228379. Epub 2016 May 10.

引用本文的文献

1
Challenges and opportunities for the characterization of electronic properties in halide perovskite solar cells.
Chem Sci. 2025 Apr 29;16(19):8153-8195. doi: 10.1039/d5sc00504c. eCollection 2025 May 14.
2
Parallel tempered Bayesian inference for characterizing non-ideal semiconductors: Carrier trapping in cadmium telluride thin films.
iScience. 2025 Jan 21;28(2):111850. doi: 10.1016/j.isci.2025.111850. eCollection 2025 Feb 21.
3
All-perovskite tandem solar cells with improved grain surface passivation.
Nature. 2022 Mar;603(7899):73-78. doi: 10.1038/s41586-021-04372-8. Epub 2022 Jan 17.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验