Hempel Hannes, Hages Charles J, Eichberger Rainer, Repins Ingrid, Unold Thomas
Department Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
Sci Rep. 2018 Sep 27;8(1):14476. doi: 10.1038/s41598-018-32695-6.
The mobilities of electrons and holes determine the applicability of any semiconductor, but their individual measurement remains a major challenge. Here, we show that time-resolved terahertz spectroscopy (TRTS) can distinguish the mobilities of minority and majority charge carriers independently of the doping-type and without electrical contacts. To this end, we combine the well-established determination of the sum of electron and hole mobilities from photo-induced THz absorption spectra with mobility-dependent ambipolar modeling of TRTS transients. The method is demonstrated on a polycrystalline CuZnSnSe thin film and reveals a minority (electron) mobility of 128 cm/V-s and a majority (hole) carrier mobility of 7 cm/V-s in the vertical transport direction relevant for light emitting, photovoltaic and solar water splitting devices. Additionally, the TRTS analysis yields an effective bulk carrier lifetime of 4.4 ns, a surface recombination velocity of 6 * 10 cm/s and a doping concentration of ca. 10 cm, thus offering the potential for contactless screen novel optoelectronic materials.
电子和空穴的迁移率决定了任何半导体的适用性,但其单独测量仍然是一项重大挑战。在此,我们表明时间分辨太赫兹光谱(TRTS)能够独立于掺杂类型且无需电接触来区分少数载流子和多数载流子的迁移率。为此,我们将基于光致太赫兹吸收光谱确定电子和空穴迁移率总和的成熟方法与TRTS瞬态的迁移率相关双极性建模相结合。该方法在多晶CuZnSnSe薄膜上得到验证,揭示了在与发光、光伏和太阳能水分解器件相关的垂直传输方向上,少数(电子)迁移率为128 cm²/V·s,多数(空穴)载流子迁移率为7 cm²/V·s。此外,TRTS分析得出有效体载流子寿命为4.4 ns,表面复合速度为6×10⁵ cm/s,掺杂浓度约为10¹⁵ cm⁻³,从而为非接触筛选新型光电子材料提供了潜力。