Suppr超能文献

靶向 G 蛋白偶联受体信号转导的 G 蛋白阻断剂。

Targeting G protein-coupled receptor signalling by blocking G proteins.

机构信息

Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA.

出版信息

Nat Rev Drug Discov. 2018 Nov;17(11):789-803. doi: 10.1038/nrd.2018.135. Epub 2018 Sep 28.

Abstract

G protein-coupled receptors (GPCRs) are the largest class of drug targets, largely owing to their druggability, diversity and physiological efficacy. Many drugs selectively target specific subtypes of GPCRs, but high specificity for individual GPCRs may not be desirable in complex multifactorial disease states in which multiple receptors may be involved. One approach is to target G protein subunits rather than the GPCRs directly. This approach has the potential to achieve broad efficacy by blocking pathways shared by multiple GPCRs. Additionally, because many GPCRs couple to multiple G protein signalling pathways, blocking specific G protein subunits can 'bias' GPCR signals by inhibiting only a subset of these signals. Molecules that target G protein α or βγ-subunits have been developed and show strong efficacy in multiple preclinical disease models and biased inhibition of G protein signalling. In this Review, we discuss the development and characterization of G protein α and βγ-subunit ligands and the preclinical evidence that this exciting new approach has potential for therapeutic efficacy in a number of indications, such as pain, thrombosis, asthma and heart failure.

摘要

G 蛋白偶联受体(GPCRs)是最大的药物靶点类别之一,主要归因于它们的可成药性、多样性和生理功效。许多药物选择性地靶向特定的 GPCR 亚型,但在涉及多种受体的复杂多因素疾病状态下,对单个 GPCR 的高特异性可能并不理想。一种方法是靶向 G 蛋白亚基而不是直接靶向 GPCR。这种方法有可能通过阻断多个 GPCR 共享的途径来实现广泛的疗效。此外,由于许多 GPCR 与多种 G 蛋白信号通路偶联,因此阻断特定的 G 蛋白亚基可以通过仅抑制这些信号的一部分来“偏向”GPCR 信号。已经开发出针对 G 蛋白α或βγ亚基的分子,并在多种临床前疾病模型中显示出强大的疗效,并对 G 蛋白信号的偏向性抑制。在这篇综述中,我们讨论了 G 蛋白α和βγ亚基配体的开发和表征,以及这一令人兴奋的新方法在许多适应症(如疼痛、血栓形成、哮喘和心力衰竭)中具有治疗疗效的临床前证据。

相似文献

1
Targeting G protein-coupled receptor signalling by blocking G proteins.
Nat Rev Drug Discov. 2018 Nov;17(11):789-803. doi: 10.1038/nrd.2018.135. Epub 2018 Sep 28.
3
Biased signalling: from simple switches to allosteric microprocessors.
Nat Rev Drug Discov. 2018 Apr;17(4):243-260. doi: 10.1038/nrd.2017.229. Epub 2018 Jan 5.
4
Biased Agonism/Antagonism of Cardiovascular GPCRs for Heart Failure Therapy.
Int Rev Cell Mol Biol. 2018;339:41-61. doi: 10.1016/bs.ircmb.2018.02.007. Epub 2018 Mar 26.
5
Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits.
Neurochem Int. 2007 Jul-Sep;51(2-4):140-64. doi: 10.1016/j.neuint.2007.06.006. Epub 2007 Jun 19.
6
Druggable Lipid GPCRs: Past, Present, and Prospects.
Adv Exp Med Biol. 2020;1274:223-258. doi: 10.1007/978-3-030-50621-6_10.
7
Novel insights into biased agonism at G protein-coupled receptors and their potential for drug design.
Curr Pharm Des. 2013;19(28):5156-66. doi: 10.2174/1381612811319280014.
8
Targeting platelet G-protein coupled receptors (GPCRs): looking beyond conventional GPCR antagonism.
Curr Vasc Pharmacol. 2010 Mar;8(2):140-54. doi: 10.2174/157016110790886938.
9
Heterotrimeric G Proteins as Therapeutic Targets in Drug Discovery.
J Med Chem. 2020 May 28;63(10):5013-5030. doi: 10.1021/acs.jmedchem.9b01452. Epub 2019 Dec 26.
10
Emerging opportunities for allosteric modulation of G-protein coupled receptors.
Biochem Pharmacol. 2013 Jan 15;85(2):153-62. doi: 10.1016/j.bcp.2012.09.001. Epub 2012 Sep 11.

引用本文的文献

1
FPR2 Agonism Attenuates Restenosis by Mitigating Neointimal Hyperplasia via ELOVL6.
FASEB J. 2025 Sep 15;39(17):e71020. doi: 10.1096/fj.202501823R.
3
Unmasking Conformationally Adaptable Lipids as Drug Receptors.
J Med Chem. 2025 Aug 28;68(16):16912-16920. doi: 10.1021/acs.jmedchem.5c01035. Epub 2025 Aug 11.
5
6
Cyclic peptide inhibitors function as molecular glues to stabilize Gq/11 heterotrimers.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2418398122. doi: 10.1073/pnas.2418398122. Epub 2025 May 7.
7
Connecting dots of long COVID-19 pathogenesis: a vagus nerve- hypothalamic-pituitary- adrenal-mitochondrial axis dysfunction.
Front Cell Infect Microbiol. 2024 Dec 13;14:1501949. doi: 10.3389/fcimb.2024.1501949. eCollection 2024.
8
Gallein increases prostaglandin F2α‑induced osteoprotegerin and IL‑6 secretion in osteoblasts.
Biomed Rep. 2024 Aug 14;21(5):147. doi: 10.3892/br.2024.1835. eCollection 2024 Nov.
9
Gut microbiota CLA and IL-35 induction in macrophages through Gαq/11-mediated STAT1/4 pathway: an animal-based study.
Gut Microbes. 2024 Jan-Dec;16(1):2437253. doi: 10.1080/19490976.2024.2437253. Epub 2024 Dec 5.
10
Fluoride and gallein regulate polyphosphate accumulation in dental caries-associated .
Microbiology (Reading). 2024 Nov;170(11). doi: 10.1099/mic.0.001519.

本文引用的文献

1
Targeting nucleotide exchange to inhibit constitutively active G protein α subunits in cancer cells.
Sci Signal. 2018 Sep 4;11(546):eaao6852. doi: 10.1126/scisignal.aao6852.
4
Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex.
Nature. 2018 Mar 1;555(7694):121-125. doi: 10.1038/nature25773. Epub 2018 Feb 21.
5
Lack of beta-arrestin signaling in the absence of active G proteins.
Nat Commun. 2018 Jan 23;9(1):341. doi: 10.1038/s41467-017-02661-3.
6
APP/Go protein Gβγ-complex signaling mediates Aβ degeneration and cognitive impairment in Alzheimer's disease models.
Neurobiol Aging. 2018 Apr;64:44-57. doi: 10.1016/j.neurobiolaging.2017.12.013. Epub 2017 Dec 20.
7
Biased signalling: from simple switches to allosteric microprocessors.
Nat Rev Drug Discov. 2018 Apr;17(4):243-260. doi: 10.1038/nrd.2017.229. Epub 2018 Jan 5.
8
Bias Factor and Therapeutic Window Correlate to Predict Safer Opioid Analgesics.
Cell. 2017 Nov 16;171(5):1165-1175.e13. doi: 10.1016/j.cell.2017.10.035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验