Suppr超能文献

利用气相色谱-质谱联用结合主成分分析对考沃特麝香葡萄在成熟阶段的挥发性化合物进行表征。

Characterization of volatile compounds in Cowart muscadine grape () during ripening stages using GC-MS combined with principal component analysis.

作者信息

Lee Bolim, Lin Pei-Ching, Cha Hwan Soo, Luo Jun, Chen Feng

机构信息

1Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634 USA.

Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea.

出版信息

Food Sci Biotechnol. 2016 Oct 31;25(5):1319-1326. doi: 10.1007/s10068-016-0207-3. eCollection 2016.

Abstract

Muscadine grape () is a popular fruit in the Southeastern United States because of its unique aroma and strong antioxidant capacity. Volatile compounds of a locally cultivated muscadine cultivar Cowart were characterized by solid-phase microextraction coupled with GC-MS. Twenty-eight volatile compounds, including fruity short-chain esters, alcohols, terpenes, and carbonyl compounds, were detected based on mass spectra and Kovats indices. Based on principal component analysis and hierarchical clustering, the grapes in stages I and II had relatively similar flavor patterns, which were different from that in stage III. Butyl-2-butenoate, hexyl acetate, propyl acetate, ethyl trans-2-butenoate, hexyl-2-butenoate, ethyl acetate, butyl acetate, 1-octanol, ethyl hexanoate, and β- citral were present as distinct volatile chemicals in stage III, while nonanal, decanal, and β-citronellol were distinct in stage II, and myrcenol, β-ocimene, and l-limonene were biomarkers in stage I. Understanding volatile compounds at each stage can assist farmers in choosing the optimal time to harvest muscadine grapes.

摘要

圆叶葡萄()因其独特的香气和强大的抗氧化能力,在美国东南部是一种受欢迎的水果。采用固相微萃取结合气相色谱 - 质谱联用技术对当地种植的圆叶葡萄品种考沃特的挥发性化合物进行了表征。基于质谱和科瓦茨指数,检测到了28种挥发性化合物,包括水果味的短链酯类、醇类、萜类和羰基化合物。基于主成分分析和层次聚类,第一阶段和第二阶段的葡萄具有相对相似的风味模式,这与第三阶段不同。丁酸 - 2 - 丁烯酯、乙酸己酯、乙酸丙酯、反式 - 2 - 丁烯酸乙酯、己酸 - 2 - 丁烯酯、乙酸乙酯、乙酸丁酯、1 - 辛醇、己酸乙酯和β - 柠檬醛在第三阶段作为独特的挥发性化学物质存在,而壬醛、癸醛和β - 香茅醇在第二阶段独特,月桂烯醇、β - 罗勒烯和柠檬烯是第一阶段的生物标志物。了解每个阶段的挥发性化合物可以帮助农民选择收获圆叶葡萄的最佳时间。

相似文献

1
Characterization of volatile compounds in Cowart muscadine grape () during ripening stages using GC-MS combined with principal component analysis.
Food Sci Biotechnol. 2016 Oct 31;25(5):1319-1326. doi: 10.1007/s10068-016-0207-3. eCollection 2016.
3
In Depth Proteome Analysis of Ripening Muscadine Grape Berry cv. Carlos Reveals Proteins Associated with Flavor and Aroma Compounds.
J Proteome Res. 2016 Sep 2;15(9):2910-23. doi: 10.1021/acs.jproteome.5b01064. Epub 2016 Aug 8.
4
Characterization of aroma compounds of Chinese famous liquors by gas chromatography-mass spectrometry and flash GC electronic-nose.
J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Jan 15;945-946:92-100. doi: 10.1016/j.jchromb.2013.11.032. Epub 2013 Nov 25.
6
Identification of muscadine wine sulfur volatiles: pectinase versus skin-contact maceration.
J Agric Food Chem. 2013 Jan 23;61(3):532-9. doi: 10.1021/jf304074m. Epub 2013 Jan 14.
9
Evolution of volatile compounds during the development of Muscat grape 'Shine Muscat' (Vitis labrusca × V. vinifera).
Food Chem. 2020 Mar 30;309:125778. doi: 10.1016/j.foodchem.2019.125778. Epub 2019 Oct 25.
10
Comparison of odor-active compounds in grapes and wines from vitis vinifera and non-foxy American grape species.
J Agric Food Chem. 2011 Oct 12;59(19):10657-64. doi: 10.1021/jf2026204. Epub 2011 Sep 13.

引用本文的文献

1
An introductory review on the application of principal component analysis in the data exploration of the chemical analysis of food samples.
Food Sci Biotechnol. 2024 Feb 3;33(6):1323-1336. doi: 10.1007/s10068-023-01509-5. eCollection 2024 May.
4
The antifungal mechanisms of plant volatile compound 1-octanol against Aspergillus flavus growth.
Appl Microbiol Biotechnol. 2022 Aug;106(13-16):5179-5196. doi: 10.1007/s00253-022-12049-z. Epub 2022 Jul 2.
5
Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation.
Front Plant Sci. 2022 Mar 10;13:860157. doi: 10.3389/fpls.2022.860157. eCollection 2022.
7
Proximate composition, nutritional evaluation and functional properties of a promising food: Arabian wax Cissus ( Forssk) leaves.
J Food Sci Technol. 2019 Nov;56(11):4844-4854. doi: 10.1007/s13197-019-03947-8. Epub 2019 Jul 31.

本文引用的文献

2
Advances in fruit aroma volatile research.
Molecules. 2013 Jul 11;18(7):8200-29. doi: 10.3390/molecules18078200.
3
Evolution of the aromatic profile in Garnacha Tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained.
Food Chem. 2013 Aug 15;139(1-4):1052-61. doi: 10.1016/j.foodchem.2012.12.048. Epub 2013 Jan 17.
4
Changes in free and bound fractions of aroma compounds of four Vitis vinifera cultivars at the last ripening stages.
Phytochemistry. 2012 Feb;74:196-205. doi: 10.1016/j.phytochem.2011.10.004. Epub 2011 Nov 7.
5
Identification and quantification of impact aroma compounds in 4 nonfloral Vitis vinifera varieties grapes.
J Food Sci. 2010 Jan-Feb;75(1):S81-8. doi: 10.1111/j.1750-3841.2009.01436.x.
6
Application of Headspace Solid-Phase Microextraction for Determination of Chloro-Organic Compounds in Sewage Samples.
Toxicol Mech Methods. 2008 Jul;18(6):543-550. doi: 10.1080/15376510701624084. Epub 2008 Jun 23.
7
8
Inactivation of Enterobacter sakazakii by water-soluble muscadine seed extracts.
Int J Food Microbiol. 2009 Feb 28;129(3):295-9. doi: 10.1016/j.ijfoodmicro.2008.12.014. Epub 2008 Dec 24.
9
Rapid determination of volatile compounds in grapes by HS-SPME coupled with GC-MS.
Talanta. 2005 Jun 15;66(5):1152-7. doi: 10.1016/j.talanta.2005.01.015.
10
Screening of variety- and pre-fermentation-related volatile compounds during ripening of white grapes to define their evolution profile.
Anal Chim Acta. 2007 Aug 6;597(2):257-64. doi: 10.1016/j.aca.2007.07.010. Epub 2007 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验