Suppr超能文献

主成分分析在食品样本化学分析数据探索中的应用综述

An introductory review on the application of principal component analysis in the data exploration of the chemical analysis of food samples.

作者信息

Souza Anderson Santos, Bezerra Marcos Almeida, Cerqueira Uillian Mozart Ferreira Mata, Rodrigues Caiene Jesus Oliveira, Santos Bianca Cotrim, Novaes Cleber Galvão, Almeida Erica Raina Venâncio

机构信息

Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Campus Anísio Teixeira, Rua Hormindo Barros, 58, Vitória da Conquista, Bahia 45029-094 Brazil.

Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, Salvador, Bahia 40170-115 Brazil.

出版信息

Food Sci Biotechnol. 2024 Feb 3;33(6):1323-1336. doi: 10.1007/s10068-023-01509-5. eCollection 2024 May.

Abstract

Principal component analysis (PCA) is currently one of the most used multivariate data analysis techniques for evaluating information from food analysis. In this review, a brief introduction to the theoretical principles that underlie PCA will be given, in addition to presenting the most commonly used computer programs. An example from the literature was discussed to illustrate the use of this chemometric tool and interpretation of graphs and parameters obtained. A list of recently published articles will also be presented, in order to show the applicability and potential of the technique in the food analysis field.

摘要

主成分分析(PCA)是目前用于评估食品分析信息的最常用多元数据分析技术之一。在本综述中,除了介绍最常用的计算机程序外,还将简要介绍PCA的理论原理。讨论了文献中的一个例子,以说明这种化学计量工具的使用以及对所得图形和参数的解释。还将列出最近发表的文章列表,以展示该技术在食品分析领域的适用性和潜力。

相似文献

1
An introductory review on the application of principal component analysis in the data exploration of the chemical analysis of food samples.
Food Sci Biotechnol. 2024 Feb 3;33(6):1323-1336. doi: 10.1007/s10068-023-01509-5. eCollection 2024 May.
2
Application of multivariate data analysis for food quality investigations: An example-based review.
Food Res Int. 2022 Jan;151:110878. doi: 10.1016/j.foodres.2021.110878. Epub 2021 Dec 8.
3
Semi-quantitative chemometric models for characterization of mixtures of sugars using infrared spectral data.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Feb 5;326:125225. doi: 10.1016/j.saa.2024.125225. Epub 2024 Sep 27.
4
Application of chemometric techniques: An innovative approach to discriminate two seaweed cultivars by physico-functional properties.
Food Chem. 2019 Aug 15;289:269-277. doi: 10.1016/j.foodchem.2019.03.051. Epub 2019 Mar 15.
9

本文引用的文献

2
Multivariate analysis of metals contents in spices commonly consumed in republic of Korea.
Food Addit Contam Part B Surveill. 2021 Sep;14(3):184-192. doi: 10.1080/19393210.2021.1914196. Epub 2021 Jun 2.
3
Principal component analysis of hyperspectral data for early detection of mould in cheeselets.
Curr Res Food Sci. 2021 Jan 11;4:18-27. doi: 10.1016/j.crfs.2020.12.003. eCollection 2021.
4
Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra.
Appl Spectrosc. 2021 Apr;75(4):361-375. doi: 10.1177/0003702820987847. Epub 2021 Jan 22.
6
Simultaneous migration of bisphenol compounds and trace metals in canned vegetable food.
Food Chem. 2019 Aug 1;288:228-238. doi: 10.1016/j.foodchem.2019.02.116. Epub 2019 Mar 2.
8
Mineral content in mustard leaves according to the cooking method.
Food Chem. 2019 Feb 1;273:172-177. doi: 10.1016/j.foodchem.2017.12.042. Epub 2017 Dec 13.
9
Characterization of volatile compounds in Cowart muscadine grape () during ripening stages using GC-MS combined with principal component analysis.
Food Sci Biotechnol. 2016 Oct 31;25(5):1319-1326. doi: 10.1007/s10068-016-0207-3. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验