Souza Anderson Santos, Bezerra Marcos Almeida, Cerqueira Uillian Mozart Ferreira Mata, Rodrigues Caiene Jesus Oliveira, Santos Bianca Cotrim, Novaes Cleber Galvão, Almeida Erica Raina Venâncio
Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Campus Anísio Teixeira, Rua Hormindo Barros, 58, Vitória da Conquista, Bahia 45029-094 Brazil.
Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, Salvador, Bahia 40170-115 Brazil.
Food Sci Biotechnol. 2024 Feb 3;33(6):1323-1336. doi: 10.1007/s10068-023-01509-5. eCollection 2024 May.
Principal component analysis (PCA) is currently one of the most used multivariate data analysis techniques for evaluating information from food analysis. In this review, a brief introduction to the theoretical principles that underlie PCA will be given, in addition to presenting the most commonly used computer programs. An example from the literature was discussed to illustrate the use of this chemometric tool and interpretation of graphs and parameters obtained. A list of recently published articles will also be presented, in order to show the applicability and potential of the technique in the food analysis field.
主成分分析(PCA)是目前用于评估食品分析信息的最常用多元数据分析技术之一。在本综述中,除了介绍最常用的计算机程序外,还将简要介绍PCA的理论原理。讨论了文献中的一个例子,以说明这种化学计量工具的使用以及对所得图形和参数的解释。还将列出最近发表的文章列表,以展示该技术在食品分析领域的适用性和潜力。