Suppr超能文献

通过时间分辨饱和转移电子顺磁共振测量分子旋转运动

Measurement of rotational molecular motion by time-resolved saturation transfer electron paramagnetic resonance.

作者信息

Fajer P, Thomas D D, Feix J B, Hyde J S

出版信息

Biophys J. 1986 Dec;50(6):1195-202. doi: 10.1016/S0006-3495(86)83562-7.

Abstract

We have used saturation-recovery electron paramagnetic resonance (SR-EPR), a time-resolved saturation transfer EPR technique, to measure directly the microsecond rotational diffusion of spin-labeled proteins. SR-EPR uses an intense microwave pulse to saturate a spin population having narrow distribution of orientations with respect to the magnetic field. The time evolution of the signal is then observed. The signal increases in time as saturation is relieved by spin-lattice relaxation (Tl) as well as by saturation transfer due to spectral diffusion (Tsd), which is a function of rotational diffusion (Tr) and spectral position. In the presence of both events, the recovery is biphasic, with the initial phase related to both Tr and Tl, and the second phase determined only by Tl. We have measured the saturation recoveries of spin-labeled hemoglobin tumbling in media of known viscosities as a function of rotational correlation time (Tr) and pulse duration (tp). The Tr values estimated from the initial phase of recovery were in good agreement with theory. Variation of the pulse time can also be used to determine Tr. For tp less than Tsd, the recoveries were observed to be biphasic, for tp greater than Tsd a single-exponential. T1 values were determined from the recoveries after pulses quenching spectral diffusion or from the second phase of recovery after shorter pulses. These results demonstrate that SR-EPR is applicable to the study of motion of spin-labeled proteins. Its time resolution should provide a significant advantage over steady state techniques, particularly in the case of motional anisotropy or system heterogeneity.

摘要

我们使用了饱和恢复电子顺磁共振(SR-EPR)这一技术,它是一种时间分辨饱和转移EPR技术,用于直接测量自旋标记蛋白的微秒级旋转扩散。SR-EPR利用强微波脉冲使相对于磁场具有窄取向分布的自旋群体达到饱和。然后观察信号随时间的变化。随着自旋-晶格弛豫(T1)以及由于光谱扩散(Tsd)引起的饱和转移(Tsd是旋转扩散(Tr)和光谱位置的函数)使饱和状态解除,信号随时间增加。在这两种情况同时存在时,恢复是双相的,初始阶段与Tr和T1都有关,第二阶段仅由T1决定。我们测量了在已知粘度介质中翻滚的自旋标记血红蛋白的饱和恢复情况,作为旋转相关时间(Tr)和脉冲持续时间(tp)的函数。从恢复的初始阶段估计的Tr值与理论值吻合良好。脉冲时间的变化也可用于确定Tr。当tp小于Tsd时,观察到恢复是双相的;当tp大于Tsd时,是单指数的。T1值通过淬灭光谱扩散后的脉冲恢复情况或较短脉冲后的恢复第二阶段来确定。这些结果表明SR-EPR适用于研究自旋标记蛋白的运动。其时间分辨率相对于稳态技术应具有显著优势,特别是在运动各向异性或系统异质性的情况下。

相似文献

引用本文的文献

3
Autobiography of James S. Hyde.詹姆斯·S·海德自传。
Appl Magn Reson. 2017 Dec;48(11-12):1103-1147. doi: 10.1007/s00723-017-0950-5. Epub 2017 Oct 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验