Suppr超能文献

超导微波谐振器中薄膜颗粒铝的损耗机制和准粒子动力学

Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum.

机构信息

Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.

Université Grenoble Alpes, CNRS, Grenoble INP, Insitut Néel, F-38000 Grenoble, France.

出版信息

Phys Rev Lett. 2018 Sep 14;121(11):117001. doi: 10.1103/PhysRevLett.121.117001.

Abstract

Superconducting high kinetic inductance elements constitute a valuable resource for quantum circuit design and millimeter-wave detection. Granular aluminum (grAl) in the superconducting regime is a particularly interesting material since it has already shown a kinetic inductance in the range of nH/□ and its deposition is compatible with conventional Al/AlOx/Al Josephson junction fabrication. We characterize microwave resonators fabricated from grAl with a room temperature resistivity of 4×10^{3}  μΩ cm, which is a factor of 3 below the superconductor to insulator transition, showing a kinetic inductance fraction close to unity. The measured internal quality factors are on the order of Q_{i}=10^{5} in the single photon regime, and we demonstrate that nonequilibrium quasiparticles (QPs) constitute the dominant loss mechanism. We extract QP relaxation times in the range of 1 s and we observe QP bursts every ∼20  s. The current level of coherence of grAl resonators makes them attractive for integration in quantum devices, while it also evidences the need to reduce the density of nonequilibrium QPs.

摘要

超导高动磁电感元件是量子电路设计和毫米波探测的宝贵资源。超导态下的颗粒状铝(grAl)是一种特别有趣的材料,因为它已经表现出在纳亨/□范围内的动磁电感,并且其沉积与传统的 Al/AlOx/Al 约瑟夫森结制造兼容。我们对室温电阻率为 4×10^{3} μΩ·cm 的 grAl 微波谐振器进行了特性描述,这比超导-绝缘转变低 3 个数量级,表现出接近 1 的动磁电感分数。在单光子模式下,测量到的内部品质因数约为 Q_{i}=10^{5},我们证明非平衡准粒子(QPs)是主要的损耗机制。我们提取了 QP 弛豫时间范围在 1 s 内,并且观察到每隔约 20 s 就会出现 QP 爆发。grAl 谐振器的当前相干水平使其成为量子器件集成的有吸引力的选择,同时也证明了需要降低非平衡 QP 的密度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验