Suppr超能文献

自噬驱动的代谢转换重编程干细胞命运。

Mitophagy-driven metabolic switch reprograms stem cell fate.

机构信息

Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.

P.G. Department of Zoology, Vikram Deb (Auto) College, Jeypore, Odisha, 764001, India.

出版信息

Cell Mol Life Sci. 2019 Jan;76(1):27-43. doi: 10.1007/s00018-018-2922-9. Epub 2018 Sep 28.

Abstract

"Cellular reprogramming" facilitates the generation of desired cellular phenotype through the cell fate transition by affecting the mitochondrial dynamics and metabolic reshuffle in the embryonic and somatic stem cells. Interestingly, both the processes of differentiation and dedifferentiation witness a drastic and dynamic alteration in the morphology, number, distribution, and respiratory capacity of mitochondria, which are tightly regulated by the fission/fusion cycle, and mitochondrial clearance through autophagy following mitochondrial fission. Intriguingly, mitophagy is said to be essential in the differentiation of stem cells into various lineages such as erythrocytes, eye lenses, neurites, myotubes, and M1 macrophages. Mitophagy is also believed to play a central role in the dedifferentiation of a terminally differentiated cell into an induced pluripotent cell and in the acquisition of 'stemness' in cancer cells. Mitophagy-induced alteration in the mitochondrial dynamics facilitates metabolic shift, either into a glycolytic phenotype or into an OXPHOS phenotype, depending on the cellular demand. Mitophagy-induced rejuvenation of mitochondria regulates the transition of bioenergetics and metabolome, remodeling which facilitates an alteration in their cellular developmental capability. This review describes the detailed mechanism of the process of mitophagy and its association with cellular programming through alteration in the mitochondrial energetics. The metabolic shift post mitophagy is suggested to be a key factor in the cell fate transition during differentiation and dedifferentiation.

摘要

“细胞重编程”通过影响胚胎和体干细胞中线粒体动力学和代谢重排,促进所需细胞表型的产生。有趣的是,分化和去分化过程都见证了线粒体形态、数量、分布和呼吸能力的剧烈和动态变化,这些变化受分裂/融合周期以及线粒体分裂后通过自噬清除的严格调节。有趣的是,自噬被认为对于干细胞向红细胞、晶状体、神经突、肌管和 M1 巨噬细胞等各种谱系的分化至关重要。自噬也被认为在终末分化细胞向诱导多能细胞的去分化以及癌细胞中获得“干性”中发挥核心作用。自噬诱导的线粒体动力学改变促进代谢转变,要么进入糖酵解表型,要么进入 OXPHOS 表型,具体取决于细胞的需求。自噬诱导的线粒体再生调节生物能学和代谢组的转变,重塑促进其细胞发育能力的改变。本文描述了自噬的详细机制及其通过改变线粒体能量代谢与细胞编程的关联。自噬后的代谢转变被认为是分化和去分化过程中细胞命运转变的关键因素。

相似文献

1
Mitophagy-driven metabolic switch reprograms stem cell fate.
Cell Mol Life Sci. 2019 Jan;76(1):27-43. doi: 10.1007/s00018-018-2922-9. Epub 2018 Sep 28.
2
Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate.
Aging (Albany NY). 2016 Jul;8(7):1330-52. doi: 10.18632/aging.100976.
5
mTORC1-PGC1 axis regulates mitochondrial remodeling during reprogramming.
FEBS J. 2020 Jan;287(1):108-121. doi: 10.1111/febs.15024. Epub 2019 Aug 18.
7
Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming.
Biochim Biophys Acta. 2012 May;1820(5):571-6. doi: 10.1016/j.bbagen.2011.09.013. Epub 2011 Sep 29.
8
Mitophagy mediates metabolic reprogramming of induced pluripotent stem cells undergoing endothelial differentiation.
J Biol Chem. 2021 Dec;297(6):101410. doi: 10.1016/j.jbc.2021.101410. Epub 2021 Nov 14.
9
Going through changes - the role of autophagy during reprogramming and differentiation.
J Cell Sci. 2024 Feb 15;137(4). doi: 10.1242/jcs.261655. Epub 2024 Feb 23.

引用本文的文献

1
Dental follicle stem cell-derived small extracellular vesicles ameliorate pulpitis by reprogramming macrophage metabolism.
Bioact Mater. 2025 May 12;51:179-196. doi: 10.1016/j.bioactmat.2025.04.034. eCollection 2025 Sep.
2
DAZAP1 maintains gastric cancer stemness by inducing mitophagy.
JCI Insight. 2025 May 22;10(10). doi: 10.1172/jci.insight.175422.
3
regulation of non-small cell lung cancer radiotherapy resistance through the pathway of protective mitophagy.
Transl Lung Cancer Res. 2025 Apr 30;14(4):1320-1339. doi: 10.21037/tlcr-2025-181. Epub 2025 Apr 27.
5
Molecular regulation of mitophagy signaling in tumor microenvironment and its targeting for cancer therapy.
Cytokine Growth Factor Rev. 2025 Jan 17. doi: 10.1016/j.cytogfr.2025.01.004.
6
The inhibition of PINK1/Drp1-mediated mitophagy by hyperglycemia leads to impaired osteoblastogenesis in diabetes.
iScience. 2024 Dec 3;28(1):111519. doi: 10.1016/j.isci.2024.111519. eCollection 2025 Jan 17.
8
Hypoxia-induced BNIP3 facilitates the progression and metastasis of uveal melanoma by driving metabolic reprogramming.
Autophagy. 2025 Jan;21(1):191-209. doi: 10.1080/15548627.2024.2395142. Epub 2024 Sep 12.

本文引用的文献

1
PUMA dependent mitophagy by Abrus agglutinin contributes to apoptosis through ceramide generation.
Biochim Biophys Acta Mol Cell Res. 2018 Mar;1865(3):480-495. doi: 10.1016/j.bbamcr.2017.12.002. Epub 2017 Dec 8.
3
Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation.
Redox Biol. 2018 Apr;14:474-484. doi: 10.1016/j.redox.2017.10.016. Epub 2017 Oct 20.
4
Mitophagy Controls the Activities of Tumor Suppressor p53 to Regulate Hepatic Cancer Stem Cells.
Mol Cell. 2017 Oct 19;68(2):281-292.e5. doi: 10.1016/j.molcel.2017.09.022. Epub 2017 Oct 12.
6
BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming.
Autophagy. 2017 Sep 2;13(9):1543-1555. doi: 10.1080/15548627.2017.1338545. Epub 2017 Jul 19.
7
Pink1 and Parkin regulate intestinal stem cell proliferation during stress and aging.
J Cell Biol. 2017 Aug 7;216(8):2315-2327. doi: 10.1083/jcb.201610036. Epub 2017 Jun 29.
8
BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming.
Autophagy. 2018;14(5):915-917. doi: 10.1080/15548627.2017.1332567. Epub 2018 Feb 9.
9
Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties.
Cell Death Differ. 2017 Jul;24(7):1224-1238. doi: 10.1038/cdd.2017.51. Epub 2017 May 19.
10
Programmed mitophagy is essential for the glycolytic switch during cell differentiation.
EMBO J. 2017 Jun 14;36(12):1688-1706. doi: 10.15252/embj.201695916. Epub 2017 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验