Suppr超能文献

小分子锰转运体外调节剂改变体内毒性。

Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo.

机构信息

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.

Department of Pediatrics, Neurology and Biochemistry, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA.

出版信息

Biol Trace Elem Res. 2019 Mar;188(1):127-134. doi: 10.1007/s12011-018-1531-7. Epub 2018 Sep 28.

Abstract

Manganese (Mn) is essential for several species and daily requirements are commonly met by an adequate diet. Mn overload may cause motor and psychiatric disturbances and may arise from an impaired or not fully developed excretion system, transporter malfunction and/or exposure to excessive levels of Mn. Therefore, deciphering processes regulating neuronal Mn homeostasis is essential to understand the mechanisms of Mn neurotoxicity. In the present study, we selected two small molecules (with opposing effects on Mn transport) from a previous high throughput screen of 40,167 to test their effects on Mn toxicity parameters in vivo using Caenorhabditis elegans. We pre-exposed worms to VU0063088 and VU0026921 for 30 min followed by co-exposure for 1 h with Mn and evaluated Mn accumulation, dopaminergic (DAergic) degeneration and worm survival. Control worms were exposed to vehicle (DMSO) and saline only. In pdat-1::GFP worms, with GFP labeled DAergic neurons, we observed a decrease of Mn-induced DAergic degeneration in the presence of both small molecules. This effect was also observed in an smf-2 knockout strain. SMF-2 is a regulator of Mn transport in the worms and this strain accumulates higher Mn levels. We did not observe improved survival in the presence of small molecules. Our results suggest that both VU0063088 and VU0026921 may modulate Mn levels in the worms through a mechanism that does not require SMF-2 and induce protection against Mn neurotoxicity.

摘要

锰(Mn)是几种生物必需的微量元素,通常通过饮食摄入来满足其日常需求。Mn 过载可能会导致运动和精神障碍,这可能是由于排泄系统受损或发育不完全、转运蛋白功能障碍和/或暴露于过量的 Mn 所致。因此,阐明调节神经元 Mn 稳态的过程对于理解 Mn 神经毒性的机制至关重要。在本研究中,我们从之前的 40167 种高通量筛选中选择了两种小分子(对 Mn 转运有相反的影响),并用秀丽隐杆线虫来测试它们对体内 Mn 毒性参数的影响。我们预先用 VU0063088 和 VU0026921 处理线虫 30 分钟,然后与 Mn 共同暴露 1 小时,并评估 Mn 积累、多巴胺能(DAergic)变性和线虫存活。对照线虫仅用载体(DMSO)和生理盐水处理。在 pdat-1::GFP 线虫中,用 GFP 标记的 DAergic 神经元,我们观察到在两种小分子存在的情况下,Mn 诱导的 DAergic 变性减少。这种效应也在 smf-2 敲除株中观察到。SMF-2 是线虫中 Mn 转运的调节剂,这种菌株积累更高水平的 Mn。我们没有观察到小分子存在时生存能力的提高。我们的结果表明,VU0063088 和 VU0026921 可能通过一种不依赖于 SMF-2 的机制来调节线虫中的 Mn 水平,并诱导对 Mn 神经毒性的保护。

相似文献

1
Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo.
Biol Trace Elem Res. 2019 Mar;188(1):127-134. doi: 10.1007/s12011-018-1531-7. Epub 2018 Sep 28.
3
Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans.
Metallomics. 2015 May;7(5):847-56. doi: 10.1039/c5mt00052a. Epub 2015 Mar 13.
4
8
Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity.
Neurotox Res. 2018 Oct;34(3):584-596. doi: 10.1007/s12640-018-9915-1. Epub 2018 Jun 7.
9
Functional assessment of Nramp-like metal transporters and manganese in Caenorhabditis elegans.
Biochem Biophys Res Commun. 2009 Dec 4;390(1):136-41. doi: 10.1016/j.bbrc.2009.09.082. Epub 2009 Sep 26.
10
as a Model to Study Manganese-Induced Neurotoxicity.
Biomolecules. 2022 Sep 29;12(10):1396. doi: 10.3390/biom12101396.

引用本文的文献

1
Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases.
Signal Transduct Target Ther. 2025 Feb 3;10(1):31. doi: 10.1038/s41392-024-02071-0.
2
Neurotoxicology of metals and metallic nanoparticles in .
Adv Neurotoxicol. 2023;9:107-148. doi: 10.1016/bs.ant.2023.03.001. Epub 2023 Apr 5.
4
Manganese-induced neurodegenerative diseases and possible therapeutic approaches.
Expert Rev Neurother. 2020 Nov;20(11):1109-1121. doi: 10.1080/14737175.2020.1807330. Epub 2020 Sep 2.

本文引用的文献

1
Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity.
Neurotox Res. 2018 Oct;34(3):584-596. doi: 10.1007/s12640-018-9915-1. Epub 2018 Jun 7.
2
SLC39A14 deficiency alters manganese homeostasis and excretion resulting in brain manganese accumulation and motor deficits in mice.
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1769-E1778. doi: 10.1073/pnas.1720739115. Epub 2018 Feb 7.
3
Hypothyroidism induced by loss of the manganese efflux transporter SLC30A10 may be explained by reduced thyroxine production.
J Biol Chem. 2017 Oct 6;292(40):16605-16615. doi: 10.1074/jbc.M117.804989. Epub 2017 Aug 31.
4
Manganese transporter Slc39a14 deficiency revealed its key role in maintaining manganese homeostasis in mice.
Cell Discov. 2017 Jul 18;3:17025. doi: 10.1038/celldisc.2017.25. eCollection 2017.
5
Metal Transporter () Deletion in Mice Increases Manganese Deposition and Produces Neurotoxic Signatures and Diminished Motor Activity.
J Neurosci. 2017 Jun 21;37(25):5996-6006. doi: 10.1523/JNEUROSCI.0285-17.2017. Epub 2017 May 23.
6
Neuroimaging identifies increased manganese deposition in infants receiving parenteral nutrition.
Am J Clin Nutr. 2015 Dec;102(6):1482-9. doi: 10.3945/ajcn.115.116285. Epub 2015 Nov 11.
7
SLC30A10: A novel manganese transporter.
Worm. 2015 May 11;4(3):e1042648. doi: 10.1080/21624054.2015.1042648. eCollection 2015 Jul-Sep.
8
Manganese Is Essential for Neuronal Health.
Annu Rev Nutr. 2015;35:71-108. doi: 10.1146/annurev-nutr-071714-034419. Epub 2015 May 13.
9
C. elegans locomotion: small circuits, complex functions.
Curr Opin Neurobiol. 2015 Aug;33:117-26. doi: 10.1016/j.conb.2015.03.009. Epub 2015 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验