National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States.
EMEP MSC-W, Norwegian Meteorological Institute, Oslo, Norway; Dept. Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden.
Environ Pollut. 2018 Dec;243(Pt B):1287-1301. doi: 10.1016/j.envpol.2018.09.084. Epub 2018 Sep 20.
Forests are an important biome that covers about one third of the global land surface and provides important ecosystem services. Since atmospheric deposition of nitrogen (N) can have both beneficial and deleterious effects, it is important to quantify the amount of N deposition to forest ecosystems. Measurements of N deposition to the numerous forest biomes across the globe are scarce, so chemical transport models are often used to provide estimates of atmospheric N inputs to these ecosystems. We provide an overview of approaches used to calculate N deposition in commonly used chemical transport models. The Task Force on Hemispheric Transport of Air Pollution (HTAP2) study intercompared N deposition values from a number of global chemical transport models. Using a multi-model mean calculated from the HTAP2 deposition values, we map N deposition to global forests to examine spatial variations in total, dry and wet deposition. Highest total N deposition occurs in eastern and southern China, Japan, Eastern U.S. and Europe while the highest dry deposition occurs in tropical forests. The European Monitoring and Evaluation Program (EMEP) model predicts grid-average deposition, but also produces deposition by land use type allowing us to compare deposition specifically to forests with the grid-average value. We found that, for this study, differences between the grid-average and forest specific could be as much as a factor of two and up to more than a factor of five in extreme cases. This suggests that consideration should be given to using forest-specific deposition for input to ecosystem assessments such as critical loads determinations.
森林是一种重要的生物群落,覆盖了全球陆地表面的约三分之一,提供了重要的生态系统服务。由于大气氮(N)沉降既有有益的影响,也有有害的影响,因此量化氮沉降到森林生态系统的量非常重要。对全球众多森林生物群落的氮沉降测量数据很少,因此化学输送模型通常用于估算这些生态系统的大气氮输入量。我们概述了常用于化学输送模型的计算氮沉降的方法。半球大气污染物传输工作队(HTAP2)研究比较了来自许多全球化学输送模型的氮沉降值。我们使用来自 HTAP2 沉降值的多模型平均值来绘制全球森林的氮沉降图,以检查总沉降、干沉降和湿沉降的空间变化。总氮沉降量最高的地区是中国东部和南部、日本、美国东部和欧洲,而干沉降量最高的地区是热带森林。欧洲监测和评估计划(EMEP)模型预测了网格平均沉积量,但也按土地利用类型产生了沉积量,使我们能够将沉积量与网格平均值进行具体比较,特别是与森林的沉积量进行比较。我们发现,对于本研究,网格平均值和森林特定值之间的差异可能高达两倍,在极端情况下甚至高达五倍以上。这表明,在进行生态系统评估(如临界负荷确定)时,应考虑使用特定于森林的沉积量作为输入。