Suppr超能文献

基于 I-III 期非小细胞肺癌的 CT 影像组学预后模型在 IV 期非小细胞肺癌中的适用性。

Applicability of a prognostic CT-based radiomic signature model trained on stage I-III non-small cell lung cancer in stage IV non-small cell lung cancer.

机构信息

The D-Lab: Decision Support for Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.

Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Doctor Tanslaan 12, 6229 ET, Maastricht, The Netherlands.

出版信息

Lung Cancer. 2018 Oct;124:6-11. doi: 10.1016/j.lungcan.2018.07.023. Epub 2018 Jul 20.

Abstract

OBJECTIVES

Recently it has been shown that radiomic features of computed tomography (CT) have prognostic information in stage I-III non-small cell lung cancer (NSCLC) patients. We aim to validate this prognostic radiomic signature in stage IV adenocarcinoma patients undergoing chemotherapy.

MATERIALS AND METHODS

Two datasets of chemo-naive stage IV adenocarcinoma patients were investigated, dataset 1: 285 patients with CTs performed in a single center; dataset 2: 223 patients included in a multicenter clinical trial. The main exclusion criteria were EGFR mutation or unknown mutation status and non-delineated primary tumor. Radiomic features were calculated for the primary tumor. The c-index of cox regression was calculated and compared to the signature performance for overall survival (OS).

RESULTS

In total CT scans from 195 patients were eligible for analysis. Patients having a prognostic index (PI) lower than the signature median (n = 92) had a significantly better OS than patients with a PI higher than the median (n = 103, HR 1.445, 95% CI 1.07-1.95, p = 0.02, c-index 0.576, 95% CI 0.527-0.624).

CONCLUSION

The radiomic signature, derived from daily practice CT scans, has prognostic value for stage IV NSCLC, however the signature performs less than previously described for stage I-III NSCLC stages. In the future, machine learning techniques can potentially lead to a better prognostic imaging based model for stage IV NSCLC.

摘要

目的

最近有研究表明,计算机断层扫描(CT)的放射组学特征与 I-III 期非小细胞肺癌(NSCLC)患者的预后有关。本研究旨在验证该放射组学特征在接受化疗的 IV 期腺癌患者中的预后价值。

材料和方法

本研究共纳入两个未经化疗的 IV 期腺癌患者数据集,数据集 1:285 例患者在单一中心进行 CT 检查;数据集 2:223 例患者纳入一项多中心临床试验。主要排除标准为 EGFR 突变或未知突变状态以及原发性肿瘤未明确。对原发性肿瘤进行放射组学特征分析。计算 COX 回归的 C 指数,并与总生存期(OS)的特征表现进行比较。

结果

共对 195 例患者的 CT 扫描进行了分析。预后指数(PI)低于特征中位数的患者(n=92)比 PI 高于中位数的患者(n=103)的 OS 显著更好(HR 1.445,95%CI 1.07-1.95,p=0.02,C 指数 0.576,95%CI 0.527-0.624)。

结论

该源自日常实践 CT 扫描的放射组学特征对 IV 期 NSCLC 具有预后价值,但对 I-III 期 NSCLC 阶段的预测性能不如之前描述的那么好。未来,机器学习技术可能会为 IV 期 NSCLC 带来更好的基于影像的预后模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验