Suppr超能文献

nnU-Net在CT图像上自动分割肺病变中的应用及其对放射组学模型的意义。

Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models.

作者信息

Ferrante Matteo, Rinaldi Lisa, Botta Francesca, Hu Xiaobin, Dolp Andreas, Minotti Marta, De Piano Francesca, Funicelli Gianluigi, Volpe Stefania, Bellerba Federica, De Marco Paolo, Raimondi Sara, Rizzo Stefania, Shi Kuangyu, Cremonesi Marta, Jereczek-Fossa Barbara A, Spaggiari Lorenzo, De Marinis Filippo, Orecchia Roberto, Origgi Daniela

机构信息

Medical Physics Unit, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy.

Radiation Research Unit, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy.

出版信息

J Clin Med. 2022 Dec 9;11(24):7334. doi: 10.3390/jcm11247334.

Abstract

Radiomics investigates the predictive role of quantitative parameters calculated from radiological images. In oncology, tumour segmentation constitutes a crucial step of the radiomic workflow. Manual segmentation is time-consuming and prone to inter-observer variability. In this study, a state-of-the-art deep-learning network for automatic segmentation (nnU-Net) was applied to computed tomography images of lung tumour patients, and its impact on the performance of survival radiomic models was assessed. In total, 899 patients were included, from two proprietary and one public datasets. Different network architectures (2D, 3D) were trained and tested on different combinations of the datasets. Automatic segmentations were compared to reference manual segmentations performed by physicians using the DICE similarity coefficient. Subsequently, the accuracy of radiomic models for survival classification based on either manual or automatic segmentations were compared, considering both hand-crafted and deep-learning features. The best agreement between automatic and manual contours (DICE = 0.78 ± 0.12) was achieved averaging 2D and 3D predictions and applying customised post-processing. The accuracy of the survival classifier (ranging between 0.65 and 0.78) was not statistically different when using manual versus automatic contours, both with hand-crafted and deep features. These results support the promising role nnU-Net can play in automatic segmentation, accelerating the radiomic workflow without impairing the models' accuracy. Further investigations on different clinical endpoints and populations are encouraged to confirm and generalise these findings.

摘要

放射组学研究从放射影像中计算得出的定量参数的预测作用。在肿瘤学中,肿瘤分割是放射组学工作流程的关键步骤。手动分割既耗时又容易出现观察者间的差异。在本研究中,将一种用于自动分割的先进深度学习网络(nnU-Net)应用于肺癌患者的计算机断层扫描图像,并评估其对生存放射组学模型性能的影响。总共纳入了来自两个专有数据集和一个公共数据集的899名患者。在数据集的不同组合上对不同的网络架构(2D、3D)进行了训练和测试。使用DICE相似系数将自动分割结果与医生进行的参考手动分割结果进行比较。随后,比较了基于手动或自动分割的生存分类放射组学模型的准确性,同时考虑了手工特征和深度学习特征。通过平均2D和3D预测并应用定制的后处理,实现了自动轮廓与手动轮廓之间的最佳一致性(DICE = 0.78 ± 0.12)。当使用手工特征和深度学习特征时,使用手动轮廓与自动轮廓的生存分类器准确性(范围在0.65至0.78之间)在统计学上没有差异。这些结果支持了nnU-Net在自动分割中可以发挥的有前景的作用,在不损害模型准确性的情况下加速放射组学工作流程。鼓励对不同临床终点和人群进行进一步研究,以证实和推广这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0606/9784875/6d473af7f2e7/jcm-11-07334-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验