Suppr超能文献

通过细胞周期检验点抑制,可以克服 PARP 抑制剂耐药的复制叉稳定恢复机制。

Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition.

机构信息

Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

出版信息

Cancer Treat Rev. 2018 Dec;71:1-7. doi: 10.1016/j.ctrv.2018.09.003. Epub 2018 Sep 11.

Abstract

Poly(ADP-ribose) polymerase (PARP) inhibition serves as a potent therapeutic option eliciting synthetic lethality in cancers harboring homologous recombination (HR) repair defects, such as BRCA mutations. However, the development of resistance to PARP inhibitors (PARPis) poses a clinical challenge. Restoration of HR competency is one of the many molecular factors contributing to PARPi resistance. Combination therapy with cell cycle checkpoint (ATR, CHK1, and WEE1) inhibitors is being investigated clinically in many cancers, particularly in ovarian cancer, to enhance the efficacy and circumvent resistance to PARPis. Ideally, inhibition of ATR, CHK1 and WEE1 proteins will abrogate G2 arrest and subsequent DNA repair via restored HR in PARPi-treated cells. Replication fork stabilization has recently been identified as a potential compensatory PARPi resistance mechanism, found in the absence of restored HR. ATR, CHK1, and WEE1 each possess different roles in replication fork stabilization, providing different mechanisms to consider when developing combination therapies to avoid continued development of drug resistance. This review examines the impact of ATR, CHK1, and WEE1 on replication fork stabilization. We also address the therapeutic potential for combining PARPis with cell cycle inhibitors and the possible consequence of combination therapies which do not adequately address both restored HR and replication fork stabilization as PARPi resistance mechanisms.

摘要

聚(ADP-核糖)聚合酶(PARP)抑制剂在同源重组(HR)修复缺陷的癌症中具有合成致死作用,如 BRCA 突变,因此成为一种有效的治疗选择。然而,PARP 抑制剂(PARPi)耐药性的发展是临床面临的挑战之一。恢复 HR 能力是导致 PARPi 耐药的众多分子因素之一。细胞周期检查点(ATR、CHK1 和 WEE1)抑制剂联合治疗正在许多癌症中进行临床研究,特别是在卵巢癌中,以提高疗效并避免对 PARPi 的耐药性。理想情况下,ATR、CHK1 和 WEE1 蛋白的抑制将通过恢复 PARPi 处理细胞中的 HR 来消除 G2 阻滞和随后的 DNA 修复。最近发现,在没有恢复 HR 的情况下,复制叉稳定化是一种潜在的代偿性 PARPi 耐药机制。ATR、CHK1 和 WEE1 在复制叉稳定化中各自具有不同的作用,为避免继续产生耐药性,在开发联合治疗时需要考虑不同的机制。这篇综述探讨了 ATR、CHK1 和 WEE1 对复制叉稳定化的影响。我们还讨论了将 PARPi 与细胞周期抑制剂联合应用的治疗潜力,以及那些不能充分解决 HR 恢复和复制叉稳定化作为 PARPi 耐药机制的联合治疗的可能后果。

相似文献

2
Cell cycle checkpoints and beyond: Exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor-resistant cancer.
Pharmacol Res. 2022 Apr;178:106162. doi: 10.1016/j.phrs.2022.106162. Epub 2022 Mar 5.
3
ATR, CHK1 and WEE1 inhibitors cause homologous recombination repair deficiency to induce synthetic lethality with PARP inhibitors.
Br J Cancer. 2024 Sep;131(5):905-917. doi: 10.1038/s41416-024-02745-0. Epub 2024 Jul 4.
6
Exploiting replicative stress in gynecological cancers as a therapeutic strategy.
Int J Gynecol Cancer. 2020 Aug;30(8):1224-1238. doi: 10.1136/ijgc-2020-001277. Epub 2020 Jun 22.
8
The CHK1 Inhibitor Prexasertib Exhibits Monotherapy Activity in High-Grade Serous Ovarian Cancer Models and Sensitizes to PARP Inhibition.
Clin Cancer Res. 2019 Oct 15;25(20):6127-6140. doi: 10.1158/1078-0432.CCR-19-0448. Epub 2019 Aug 13.
9
Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in -Mutant Ovarian Cancer Models.
Clin Cancer Res. 2017 Jun 15;23(12):3097-3108. doi: 10.1158/1078-0432.CCR-16-2273. Epub 2016 Dec 19.

引用本文的文献

3
Revolutionizing ovarian cancer therapy by drug repositioning for accelerated and cost-effective treatments.
Front Oncol. 2025 Jan 14;14:1514120. doi: 10.3389/fonc.2024.1514120. eCollection 2024.
4
Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms.
Oncogene. 2025 Feb;44(4):193-207. doi: 10.1038/s41388-024-03227-6. Epub 2024 Nov 21.
5
PARP inhibitors in prostate cancer: clinical applications.
Mol Biol Rep. 2024 Oct 30;51(1):1103. doi: 10.1007/s11033-024-10034-5.
6
PARP inhibition leads to synthetic lethality with key splicing-factor mutations in myelodysplastic syndromes.
Br J Cancer. 2024 Jul;131(2):231-242. doi: 10.1038/s41416-024-02729-0. Epub 2024 May 28.
8
Advances in ATM, ATR, WEE1, and CHK1/2 inhibitors in the treatment of PARP inhibitor-resistant ovarian cancer.
Cancer Biol Med. 2024 Feb 5;20(12):915-21. doi: 10.20892/j.issn.2095-3941.2023.0260.
9
Targeting ATR in Cancer Medicine.
Cancer Treat Res. 2023;186:239-283. doi: 10.1007/978-3-031-30065-3_14.

本文引用的文献

1
53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ.
Nature. 2018 Aug;560(7716):122-127. doi: 10.1038/s41586-018-0362-1. Epub 2018 Jul 25.
2
The shieldin complex mediates 53BP1-dependent DNA repair.
Nature. 2018 Aug;560(7716):117-121. doi: 10.1038/s41586-018-0340-7. Epub 2018 Jul 18.
3
53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in.
Nature. 2018 Aug;560(7716):112-116. doi: 10.1038/s41586-018-0324-7. Epub 2018 Jul 18.
4
Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells.
Nat Cell Biol. 2018 Aug;20(8):954-965. doi: 10.1038/s41556-018-0140-1. Epub 2018 Jul 18.
5
RPA and RAD51: fork reversal, fork protection, and genome stability.
Nat Struct Mol Biol. 2018 Jun;25(6):446-453. doi: 10.1038/s41594-018-0075-z. Epub 2018 May 28.
8
Emerging treatment options for ovarian cancer: focus on rucaparib.
Int J Womens Health. 2017 Dec 15;9:913-924. doi: 10.2147/IJWH.S151194. eCollection 2017.
9
The development of PARP as a successful target for cancer therapy.
Expert Rev Anticancer Ther. 2018 Feb;18(2):161-175. doi: 10.1080/14737140.2018.1419870. Epub 2017 Dec 26.
10
Replication Fork Reversal: Players and Guardians.
Mol Cell. 2017 Dec 7;68(5):830-833. doi: 10.1016/j.molcel.2017.11.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验