Suppr超能文献

工程化 crRNA 的直接重复序列以优化 FnCpf1 介导的人细胞基因组编辑。

Engineering the Direct Repeat Sequence of crRNA for Optimization of FnCpf1-Mediated Genome Editing in Human Cells.

机构信息

School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China.

The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.

出版信息

Mol Ther. 2018 Nov 7;26(11):2650-2657. doi: 10.1016/j.ymthe.2018.08.021. Epub 2018 Sep 1.

Abstract

FnCpf1-mediated genome-editing technologies have enabled a broad range of research and medical applications. Recently, we reported that FnCpf1 possesses activity in human cells and recognizes a more compatible PAM (protospacer adjacent motif, 5'-KYTV-3'), compared with the other two commonly used Cpf1 enzymes (AsCpf1 and LbCpf1), which requires a 5'-TTTN-3' PAM. However, due to the efficiency and fidelity, FnCpf1-based clinical and basic applications remain a challenge. The direct repeat (DR) sequence is one of the key elements for FnCpf1-mediated genome editing. In principle, its engineering should influence the corresponding genome-editing activity and fidelity. Here we showed that the DR mutants [G(-9)A and U(-7)A] could modulate FnCpf1 performance in human cells, enabling enhancement of both genome-editing efficiency and fidelity. These newly identified features will facilitate the design and optimization of CRISPR-Cpf1-based genome-editing strategies.

摘要

FnCpf1 介导的基因组编辑技术已经实现了广泛的研究和医学应用。最近,我们报道了 FnCpf1 在人类细胞中具有活性,并且与其他两种常用的 Cpf1 酶(AsCpf1 和 LbCpf1)相比,它识别更相容的 PAM(间隔区相邻基序,5'-KYTV-3'),后者需要 5'-TTTN-3' PAM。然而,由于效率和保真度,基于 FnCpf1 的临床和基础应用仍然是一个挑战。直接重复(DR)序列是 FnCpf1 介导的基因组编辑的关键要素之一。原则上,其工程设计应该影响相应的基因组编辑活性和保真度。在这里,我们表明 DR 突变体[G(-9)A 和 U(-7)A]可以调节 FnCpf1 在人类细胞中的性能,从而提高基因组编辑效率和保真度。这些新发现的特征将有助于设计和优化基于 CRISPR-Cpf1 的基因组编辑策略。

相似文献

1
Engineering the Direct Repeat Sequence of crRNA for Optimization of FnCpf1-Mediated Genome Editing in Human Cells.
Mol Ther. 2018 Nov 7;26(11):2650-2657. doi: 10.1016/j.ymthe.2018.08.021. Epub 2018 Sep 1.
2
A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.
Nucleic Acids Res. 2017 Nov 2;45(19):11295-11304. doi: 10.1093/nar/gkx783.
3
A Single Multiplex crRNA Array for FnCpf1-Mediated Human Genome Editing.
Mol Ther. 2018 Aug 1;26(8):2070-2076. doi: 10.1016/j.ymthe.2018.05.021. Epub 2018 Jun 15.
5
FnCpf1-Mediated Targeted Mutagenesis in Plants.
Methods Mol Biol. 2018;1795:223-239. doi: 10.1007/978-1-4939-7874-8_18.
6
FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
Nucleic Acids Res. 2017 Dec 1;45(21):12585-12598. doi: 10.1093/nar/gkx1007.
7
CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
Appl Environ Microbiol. 2018 Aug 31;84(18). doi: 10.1128/AEM.00827-18. Print 2018 Sep 15.
8
Efficient multiplex CRISPR/Cpf1 (Cas12a) genome editing system in Aspergillus aculeatus TBRC 277.
J Biotechnol. 2022 Aug 20;355:53-64. doi: 10.1016/j.jbiotec.2022.06.011. Epub 2022 Jul 2.
9
CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae.
Yeast. 2018 Feb;35(2):201-211. doi: 10.1002/yea.3278. Epub 2017 Nov 12.
10
Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases.
Funct Integr Genomics. 2021 Jul;21(3-4):355-366. doi: 10.1007/s10142-021-00782-z. Epub 2021 Mar 12.

引用本文的文献

1
Engineering an optimized hypercompact CRISPR/Cas12j-8 system for efficient genome editing in plants.
Plant Biotechnol J. 2025 Apr;23(4):1153-1164. doi: 10.1111/pbi.14574. Epub 2025 Jan 12.
2
Prime Editing and DNA Repair System: Balancing Efficiency with Safety.
Cells. 2024 May 17;13(10):858. doi: 10.3390/cells13100858.
3
Building Blocks of Artificial CRISPR-Based Systems beyond Nucleases.
Int J Mol Sci. 2022 Dec 26;24(1):397. doi: 10.3390/ijms24010397.
4
Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives.
aBIOTECH. 2019 Nov 7;1(1):58-73. doi: 10.1007/s42994-019-00009-7. eCollection 2020 Jan.
5
Two high-fidelity variants: efSaCas9 and SaCas9-HF, which one is better?
Gene Ther. 2022 Aug;29(7-8):458-463. doi: 10.1038/s41434-022-00319-4. Epub 2022 Jan 31.
6
Correlation between type IIIA CRISPR-Cas system and SCCmec in Staphylococcus epidermidis.
Arch Microbiol. 2021 Dec;203(10):6275-6286. doi: 10.1007/s00203-021-02595-x. Epub 2021 Oct 20.
7
FnCas12a/crRNA-Mediated Genome Editing in .
Front Genet. 2021 Sep 22;12:738746. doi: 10.3389/fgene.2021.738746. eCollection 2021.
8
Human cell based directed evolution of adenine base editors with improved efficiency.
Nat Commun. 2021 Oct 8;12(1):5897. doi: 10.1038/s41467-021-26211-0.
9
Engineered FnCas12a with enhanced activity through directional evolution in human cells.
J Biol Chem. 2021 Jan-Jun;296:100394. doi: 10.1016/j.jbc.2021.100394. Epub 2021 Feb 7.
10
Creating CRISPR-responsive smart materials for diagnostics and programmable cargo release.
Nat Protoc. 2020 Sep;15(9):3030-3063. doi: 10.1038/s41596-020-0367-8. Epub 2020 Aug 17.

本文引用的文献

1
A Single Multiplex crRNA Array for FnCpf1-Mediated Human Genome Editing.
Mol Ther. 2018 Aug 1;26(8):2070-2076. doi: 10.1016/j.ymthe.2018.05.021. Epub 2018 Jun 15.
3
Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversion.
Nat Commun. 2018 May 15;9(1):1903. doi: 10.1038/s41467-018-04158-z.
5
Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing.
Nat Biotechnol. 2017 Dec;35(12):1179-1187. doi: 10.1038/nbt.4005. Epub 2017 Nov 13.
6
A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.
Nucleic Acids Res. 2017 Nov 2;45(19):11295-11304. doi: 10.1093/nar/gkx783.
7
Engineered Cpf1 variants with altered PAM specificities.
Nat Biotechnol. 2017 Aug;35(8):789-792. doi: 10.1038/nbt.3900. Epub 2017 Jun 5.
8
CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice.
Sci Adv. 2017 Apr 12;3(4):e1602814. doi: 10.1126/sciadv.1602814. eCollection 2017 Apr.
9
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016.
10
Marker-free coselection for CRISPR-driven genome editing in human cells.
Nat Methods. 2017 Jun;14(6):615-620. doi: 10.1038/nmeth.4265. Epub 2017 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验