Suppr超能文献

多重CRISPR-Cpf1介导的艰难梭菌基因组编辑以了解艰难梭菌感染的发病机制

Multiplexed CRISPR-Cpf1-Mediated Genome Editing in Clostridium difficile toward the Understanding of Pathogenesis of C. difficile Infection.

作者信息

Hong Wei, Zhang Jie, Cui Guzhen, Wang Luxin, Wang Yi

出版信息

ACS Synth Biol. 2018 Jun 15;7(6):1588-1600. doi: 10.1021/acssynbio.8b00087. Epub 2018 Jun 4.

Abstract

Clostridium difficile is often the primary cause of nosocomial diarrhea, leading to thousands of deaths annually worldwide. The availability of an efficient genome editing tool for C. difficile is essential to understanding its pathogenic mechanism and physiological behavior. Although CRISPR-Cas9 has been extensively employed for genome engineering in various organisms, large gene deletion and multiplex genome editing is still challenging in microorganisms with underdeveloped genetic engineering tools. Here, we describe a streamlined CRISPR-Cpf1-based toolkit to achieve precise deletions of fur, tetM, and ermB1/2 in C. difficile with high efficiencies. All of these genes are relevant to important phenotypes (including iron uptake, antibiotics resistance, and toxin production) as related to the pathogenesis of C. difficile infection (CDI). Furthermore, we were able to delete an extremely large locus of 49.2-kb comprising a phage genome ( phiCD630-2) and realized multiplex genome editing in a single conjugation with high efficiencies (simultaneous deletion of cwp66 and tcdA). Our work highlighted the first application of CRISPR-Cpf1 for multiplexed genome editing and extremely large gene deletion in C. difficile, which are both crucial for understanding the pathogenic mechanism of C. difficile and developing strategies to fight against CDI. In addition, for the DNA cloning, we developed a one-step-assembly protocol along with a Python-based algorithm for automatic primer design, shortening the time for plasmid construction to half that of conventional procedures. The approaches we developed herein are easily and broadly applicable to other microorganisms. Our results provide valuable guidance for establishing CRISPR-Cpf1 as a versatile genome engineering tool in prokaryotic cells.

摘要

艰难梭菌通常是医院内腹泻的主要病因,在全球范围内每年导致数千人死亡。拥有一种高效的艰难梭菌基因组编辑工具对于理解其致病机制和生理行为至关重要。尽管CRISPR-Cas9已被广泛用于各种生物体的基因组工程,但在遗传工程工具欠发达的微生物中,大基因缺失和多重基因组编辑仍然具有挑战性。在此,我们描述了一种基于CRISPR-Cpf1的简化工具包,可高效实现艰难梭菌中fur、tetM和ermB1/2的精确缺失。所有这些基因都与艰难梭菌感染(CDI)发病机制相关的重要表型(包括铁摄取、抗生素抗性和毒素产生)有关。此外,我们能够删除一个包含噬菌体基因组(phiCD630-2)的49.2-kb的超大基因座,并在单次接合中高效实现多重基因组编辑(同时删除cwp66和tcdA)。我们的工作突出了CRISPR-Cpf1在艰难梭菌中多重基因组编辑和超大基因缺失的首次应用,这对于理解艰难梭菌的致病机制和制定对抗CDI的策略都至关重要。此外,对于DNA克隆,我们开发了一种一步组装方案以及一种基于Python的自动引物设计算法,将质粒构建时间缩短至传统方法的一半。我们在此开发的方法易于广泛应用于其他微生物。我们的结果为将CRISPR-Cpf1确立为原核细胞中通用的基因组工程工具提供了有价值的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验