Suppr超能文献

通过CRISPR/Cas基因组编辑技术在植物中进行精确基因替换:现状与未来展望

Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives.

作者信息

Li Shaoya, Xia Lanqin

机构信息

Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China.

出版信息

aBIOTECH. 2019 Nov 7;1(1):58-73. doi: 10.1007/s42994-019-00009-7. eCollection 2020 Jan.

Abstract

CRISPR/Cas, as a simple, versatile, robust and cost-effective system for genome manipulation, has dominated the genome editing field over the past few years. The application of CRISPR/Cas in crop improvement is particularly important in the context of global climate change, as well as diverse agricultural, environmental and ecological challenges. Various CRISPR/Cas toolboxes have been developed and allow for targeted mutagenesis at specific genome loci, transcriptome regulation and epigenome editing, base editing, and precise targeted gene/allele replacement or tagging in plants. In particular, precise replacement of an existing allele with an elite allele in a commercial variety through homology-directed repair (HDR) is a holy grail in genome editing for crop improvement as it has been very difficult, laborious and time-consuming to introgress the elite alleles into commercial varieties without any linkage drag from parental lines within a few generations in crop breeding practice. However, it still remains very challenging in crop plants. This review intends to provide an informative summary of the latest development and breakthroughs in gene replacement using CRISPR/Cas technology, with a focus on achievements, potential mechanisms and future perspectives in plant biological science as well as crop improvement.

摘要

CRISPR/Cas作为一种简单、通用、强大且经济高效的基因组操作体系,在过去几年中主导了基因组编辑领域。在全球气候变化以及各种农业、环境和生态挑战的背景下,CRISPR/Cas在作物改良中的应用尤为重要。现已开发出各种CRISPR/Cas工具箱,可用于植物特定基因组位点的靶向诱变、转录组调控和表观基因组编辑、碱基编辑以及精确的靶向基因/等位基因替换或标记。特别是,通过同源定向修复(HDR)在商业品种中用优良等位基因精确替换现有等位基因,是作物改良基因组编辑中的一个圣杯,因为在作物育种实践中,要在几代内将优良等位基因导入商业品种而不带有来自亲本系的任何连锁累赘,一直非常困难、费力且耗时。然而,在作物中实现这一点仍然极具挑战性。本综述旨在提供关于使用CRISPR/Cas技术进行基因替换的最新进展和突破的信息性总结,重点关注植物生物学以及作物改良方面的成果、潜在机制和未来展望。

相似文献

1
Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives.
aBIOTECH. 2019 Nov 7;1(1):58-73. doi: 10.1007/s42994-019-00009-7. eCollection 2020 Jan.
2
An update on precision genome editing by homology-directed repair in plants.
Plant Physiol. 2022 Mar 28;188(4):1780-1794. doi: 10.1093/plphys/kiac037.
3
The emerging and uncultivated potential of CRISPR technology in plant science.
Nat Plants. 2019 Aug;5(8):778-794. doi: 10.1038/s41477-019-0461-5. Epub 2019 Jul 15.
4
Towards CRISPR/Cas crops - bringing together genomics and genome editing.
New Phytol. 2017 Nov;216(3):682-698. doi: 10.1111/nph.14702. Epub 2017 Aug 1.
5
Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement.
Front Plant Sci. 2016 Dec 20;7:1928. doi: 10.3389/fpls.2016.01928. eCollection 2016.
6
Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
Planta. 2022 Apr 23;255(5):109. doi: 10.1007/s00425-022-03894-3.
7
CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
J Zhejiang Univ Sci B. 2021 Apr 15;22(4):253-284. doi: 10.1631/jzus.B2100009.
8
State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
Plant Cell Rep. 2022 Mar;41(3):815-831. doi: 10.1007/s00299-021-02681-w. Epub 2021 Mar 19.
9
Plant base editing and prime editing: The current status and future perspectives.
J Integr Plant Biol. 2023 Feb;65(2):444-467. doi: 10.1111/jipb.13425. Epub 2023 Feb 15.
10
Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
Mol Plant. 2019 Aug 5;12(8):1047-1059. doi: 10.1016/j.molp.2019.06.009. Epub 2019 Jun 28.

引用本文的文献

1
Manipulating brassinosteroid signaling pathway to genetically improve horticultural plants.
aBIOTECH. 2025 Feb 22;6(2):328-345. doi: 10.1007/s42994-025-00201-y. eCollection 2025 Jun.
3
CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology.
3 Biotech. 2023 Nov;13(11):383. doi: 10.1007/s13205-023-03786-7. Epub 2023 Oct 31.
4
Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding.
aBIOTECH. 2021 Apr 15;2(4):375-385. doi: 10.1007/s42994-021-00042-5. eCollection 2021 Dec.
5
Gene editing applications to modulate crop flowering time and seed dormancy.
aBIOTECH. 2020 Oct 24;1(4):233-245. doi: 10.1007/s42994-020-00032-z. eCollection 2020 Oct.
6
CRISPR for accelerating genetic gains in under-utilized crops of the drylands: Progress and prospects.
Front Genet. 2022 Oct 6;13:999207. doi: 10.3389/fgene.2022.999207. eCollection 2022.
8
CRISPR-Cas technology a new era in genomic engineering.
Biotechnol Rep (Amst). 2022 Apr 12;34:e00731. doi: 10.1016/j.btre.2022.e00731. eCollection 2022 Jun.
9
An update on precision genome editing by homology-directed repair in plants.
Plant Physiol. 2022 Mar 28;188(4):1780-1794. doi: 10.1093/plphys/kiac037.
10
Crop Quality Improvement Through Genome Editing Strategy.
Front Genome Ed. 2022 Jan 31;3:819687. doi: 10.3389/fgeed.2021.819687. eCollection 2021.

本文引用的文献

1
Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato.
Plant Biotechnol J. 2020 Oct;18(10):2133-2143. doi: 10.1111/pbi.13373. Epub 2020 Apr 1.
2
In planta gene targeting can be enhanced by the use of CRISPR/Cas12a.
Plant J. 2019 Dec;100(5):1083-1094. doi: 10.1111/tpj.14488. Epub 2019 Sep 19.
3
Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome.
Nat Genet. 2019 May;51(5):896-904. doi: 10.1038/s41588-019-0382-2. Epub 2019 May 1.
4
De Novo Domestication: An Alternative Route toward New Crops for the Future.
Mol Plant. 2019 May 6;12(5):615-631. doi: 10.1016/j.molp.2019.03.016. Epub 2019 Apr 15.
5
New plant breeding technologies for food security.
Science. 2019 Mar 29;363(6434):1390-1391. doi: 10.1126/science.aav6316.
6
Precise gene replacement in rice by RNA transcript-templated homologous recombination.
Nat Biotechnol. 2019 Apr;37(4):445-450. doi: 10.1038/s41587-019-0065-7. Epub 2019 Mar 18.
7
Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice.
Science. 2019 Apr 19;364(6437):292-295. doi: 10.1126/science.aaw7166. Epub 2019 Feb 28.
8
Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos.
Science. 2019 Apr 19;364(6437):289-292. doi: 10.1126/science.aav9973. Epub 2019 Feb 28.
9
CasX enzymes comprise a distinct family of RNA-guided genome editors.
Nature. 2019 Feb;566(7743):218-223. doi: 10.1038/s41586-019-0908-x. Epub 2019 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验