Suppr超能文献

对磺基喹喔啉苷酶功能与进化的结构及生化见解

Structural and Biochemical Insights into the Function and Evolution of Sulfoquinovosidases.

作者信息

Abayakoon Palika, Jin Yi, Lingford James P, Petricevic Marija, John Alan, Ryan Eileen, Wai-Ying Mui Janice, Pires Douglas E V, Ascher David B, Davies Gideon J, Goddard-Borger Ethan D, Williams Spencer J

机构信息

School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.

York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington YO10 5DD, United Kingdom.

出版信息

ACS Cent Sci. 2018 Sep 26;4(9):1266-1273. doi: 10.1021/acscentsci.8b00453. Epub 2018 Sep 5.

Abstract

An estimated 10 billion tonnes of sulfoquinovose (SQ) are produced and degraded each year. Prokaryotic sulfoglycolytic pathways catabolize sulfoquinovose (SQ) liberated from plant sulfolipid, or its delipidated form α-d-sulfoquinovosyl glycerol (SQGro), through the action of a sulfoquinovosidase (SQase), but little is known about the capacity of SQ glycosides to support growth. Structural studies of the first reported SQase ( YihQ) have identified three conserved residues that are essential for substrate recognition, but crossover mutations exploring active-site residues of predicted SQases from other organisms have yielded inactive mutants casting doubt on bioinformatic functional assignment. Here, we show that SQGro can support the growth of on par with d-glucose, and that the SQase prefers the naturally occurring diastereomer of SQGro. A predicted, but divergent, SQase from proved to have highly specific activity toward SQ glycosides, and structural, mutagenic, and bioinformatic analyses revealed the molecular coevolution of catalytically important amino acid pairs directly involved in substrate recognition, as well as structurally important pairs distal to the active site. Understanding the defining features of SQases empowers bioinformatic approaches for mapping sulfur metabolism in diverse microbial communities and sheds light on this poorly understood arm of the biosulfur cycle.

摘要

据估计,每年有100亿吨磺基喹啉糖(SQ)被生产和降解。原核生物的磺糖酵解途径通过磺基喹啉糖苷酶(SQase)的作用,分解从植物硫脂中释放出的磺基喹啉糖(SQ)或其脱脂形式α-d-磺基喹啉糖基甘油(SQGro),但关于SQ糖苷支持生长的能力知之甚少。首次报道的SQase(YihQ)的结构研究确定了三个对底物识别至关重要的保守残基,但对来自其他生物体的预测SQase的活性位点残基进行交叉突变产生了无活性的突变体,这让人对生物信息学功能分配产生怀疑。在这里,我们表明SQGro可以与d-葡萄糖一样支持[具体生物]的生长,并且该[具体生物]的SQase更喜欢天然存在的SQGro非对映异构体。来自[具体生物]的一个预测但有差异的SQase被证明对SQ糖苷具有高度特异性活性,结构、诱变和生物信息学分析揭示了直接参与底物识别的催化重要氨基酸对以及活性位点远端的结构重要氨基酸对的分子协同进化。了解SQase的定义特征有助于通过生物信息学方法绘制不同微生物群落中的硫代谢图谱,并揭示生物硫循环中这个了解甚少的环节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efe4/6161063/5637ba48a18e/oc-2018-00453t_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验