Suppr超能文献

基于质谱的蛋白质组学鉴定意外的蛋白质修饰

Identification of Unexpected Protein Modifications by Mass Spectrometry-Based Proteomics.

作者信息

Ahmadi Shiva, Winter Dominic

机构信息

Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany.

出版信息

Methods Mol Biol. 2019;1871:225-251. doi: 10.1007/978-1-4939-8814-3_15.

Abstract

Peptide identification relies in the majority of mass spectrometry-based proteomics experiments on matching of experimental data against peptide and fragment ion masses derived from in silico digests of protein databases. One of the main drawbacks of this approach is that modifications have to be defined for database searching and therefore no unexpected modifications can be identified in a standard setup. Consequently, in many bottom-up proteomics experiments, unexpected modifications are not identified, even if high-quality fragment ion spectra of the modified peptides were acquired. It is therefore often not straightforward to identify unexpected modifications. In this protocol, we describe a stepwise procedure to identify unexpected modifications at peptides using the database search algorithm Mascot. The workflow includes parallel searches for the identification of known modifications at unexpected amino acids, error tolerant searches for modifications unexpected in the sample but known to the community, and mass tolerant searches for entirely unknown modifications. Furthermore, we suggest a follow-up strategy consisting of (1) verification of identified modifications in the initial dataset and (2) targeted experiments using synthetic peptides.

摘要

在大多数基于质谱的蛋白质组学实验中,肽段鉴定依赖于将实验数据与从蛋白质数据库的虚拟酶切中获得的肽段和碎片离子质量进行匹配。这种方法的主要缺点之一是必须为数据库搜索定义修饰,因此在标准设置中无法识别意外修饰。因此,在许多自下而上的蛋白质组学实验中,即使获得了修饰肽段的高质量碎片离子谱,意外修饰也无法被识别。因此,识别意外修饰往往并非易事。在本方案中,我们描述了一种使用数据库搜索算法Mascot逐步鉴定肽段意外修饰的程序。该工作流程包括并行搜索以识别意外氨基酸处的已知修饰、容错搜索以识别样品中意外但科学界已知的修饰以及质量容错搜索以识别完全未知的修饰。此外,我们建议一种后续策略,包括(1)在初始数据集中验证已鉴定的修饰,以及(2)使用合成肽进行靶向实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验