Suppr超能文献

大肠杆菌对氧化石墨烯的自损伤需氧还原:GO 介导的细胞外超氧形成的作用。

Self-Damaging Aerobic Reduction of Graphene Oxide by Escherichia coli: Role of GO-Mediated Extracellular Superoxide Formation.

机构信息

College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China.

School of Environment , Beijing Normal University , Beijing 100857 , China.

出版信息

Environ Sci Technol. 2018 Nov 6;52(21):12783-12791. doi: 10.1021/acs.est.8b03753. Epub 2018 Oct 16.

Abstract

Microbial reduction of graphene oxide (GO) under aerobic conditions is poorly understood despite its critical role in changing GO toxicity and environmental fate. Here we show that 20 mg/L GO interacts with the membrane-bound cytochrome c of E. coli in saline, shuttling electrons from the respiratory chain to extracellular molecular oxygen. This results in the formation of superoxide anions (O), which in turn reduce GO in 30 min. The critical role of superoxide was demonstrated by impeding GO reduction upon addition of superoxide dismutase, or by carrying out experiments under strictly anaerobic conditions that preclude O formation. Coating GO with bovine serum albumin also stopped GO reduction, which indicates the need for direct contact between GO and the cell membrane. Cell death was observed as a consequence of GO bioreduction. Apparently, electron shuttling by GO (via membrane contact) interrupts the respiratory chain and induces oxidative stress, as indicated by a 20% decrease in electron transport activity and an increase in intracellular reactive oxygen species. This novel antimicrobial mechanism could be relevant to assess GO stability and biocompatibility, and informs potential applications for microbial control.

摘要

尽管微生物在有氧条件下还原氧化石墨烯(GO)对于改变 GO 的毒性和环境归宿具有关键作用,但人们对此知之甚少。在这里,我们表明,20mg/L 的 GO 在盐水中与大肠杆菌的膜结合细胞色素 c 相互作用,将电子从呼吸链转移到细胞外的分子氧。这导致超氧阴离子(O)的形成,进而在 30 分钟内还原 GO。超氧的关键作用是通过添加超氧化物歧化酶来阻止 GO 的还原,或者在严格的厌氧条件下进行实验,排除 O 的形成来证明的。用牛血清白蛋白对 GO 进行涂层也阻止了 GO 的还原,这表明 GO 需要与细胞膜直接接触。由于 GO 的生物还原,观察到细胞死亡。显然,GO 通过(通过膜接触)电子穿梭中断呼吸链并诱导氧化应激,这表现为电子传递活性降低 20%和细胞内活性氧增加。这种新的抗菌机制可能与评估 GO 的稳定性和生物相容性有关,并为微生物控制的潜在应用提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验