College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.
College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.
J Photochem Photobiol B. 2018 Jun;183:342-348. doi: 10.1016/j.jphotobiol.2018.05.009. Epub 2018 May 7.
Graphene-based materials have attracted a significant attention in constructing hybrid systems for drug delivery with enhanced antimicrobial activities. In our work, we demonstrated the formation of silver nanoparticles (AgNPs) on graphene oxide (GO) using tobramycin (TOB), an aminoglycoside antibiotic, as reducing and decorating agent. The TOB decorated GO AgNPs (TOB-GO-Ag) composite was used as an antibacterial agent against multi-drug resistant Gram-negative E-coli (BL21 DE3). The reversal of surface potential from -30 mV (GO) to +20 mV confirms the successful reduction of GO by TOB. Atomic force microscopy (AFM) and high-resolution transmission electron microscopic (HRTEM) analyses confirmed the formation of uniformly distributed AgNPs on the reduced GO with an approximate particle size of 5 nm. The as-synthesized nanocomposite displayed significant antibacterial activity as compared to pure AgNPs and TOB. The positively charged TOB-GO-Ag interacts with the negatively charged E. coli membrane and inhibit bacterial growth by the antibacterial actions of the released silver, GO and tobramycin from the TOB-GO-Ag composite. The significant loss of bacterial membrane potential from -52 ± 2 mV (control) to -2 ± 1 mV (treated) indicates a severe cell wall damage caused by TOB-GO-Ag composite. Furthermore, fluorescence study also demonstrated a severe membrane disruption in bacterial cells treated with TOB-GO-Ag composite as compared to pure AgNPs and GO. In conclusion, the development of such hybrid systems would help in enhancing the efficacy of available drugs and eradicating the emerging bacterial resistance.
基于石墨烯的材料在构建具有增强抗菌活性的药物输送混合系统方面引起了极大的关注。在我们的工作中,我们使用氨基糖苷类抗生素妥布霉素 (TOB) 作为还原剂和修饰剂,在氧化石墨烯 (GO) 上形成了银纳米粒子 (AgNPs)。将妥布霉素修饰的 GO 银纳米粒子 (TOB-GO-Ag) 复合材料用作抗多药耐药革兰氏阴性大肠杆菌 (BL21 DE3) 的抗菌剂。表面电位从 -30 mV(GO)逆转至 +20 mV 证实了 GO 被 TOB 成功还原。原子力显微镜 (AFM) 和高分辨率透射电子显微镜 (HRTEM) 分析证实了均匀分布的 AgNPs 在还原 GO 上的形成,其粒径约为 5nm。与纯 AgNPs 和 TOB 相比,所合成的纳米复合材料显示出显著的抗菌活性。带正电荷的 TOB-GO-Ag 与带负电荷的大肠杆菌膜相互作用,并通过从 TOB-GO-Ag 复合材料中释放的银、GO 和妥布霉素的抗菌作用抑制细菌生长。细菌膜电位从 -52 ± 2 mV(对照)显著损失至 -2 ± 1 mV(处理)表明 TOB-GO-Ag 复合材料对细胞壁造成严重损伤。此外,荧光研究还表明,与纯 AgNPs 和 GO 相比,用 TOB-GO-Ag 复合材料处理的细菌细胞的膜严重破裂。总之,开发这种混合系统将有助于提高现有药物的疗效并消除新兴的细菌耐药性。
J Photochem Photobiol B. 2018-5-7
ACS Appl Mater Interfaces. 2015-3-18
ACS Appl Mater Interfaces. 2013-4-29
Spectrochim Acta A Mol Biomol Spectrosc. 2017-3-16
J Mater Sci Mater Med. 2019-3-6
J Colloid Interface Sci. 2017-2-15
J Mater Sci Mater Med. 2018-5-10
Colloids Surf B Biointerfaces. 2013-8-29
J Funct Biomater. 2022-6-10
Antibiotics (Basel). 2021-11-2
ACS Nano. 2021-2-23
Am J Transl Res. 2019-6-15