Wu Zhaowei, Zhang Limin, Qiao Dandan, Xue Huping, Zhao Xin
College of Animal Science and Technology , Northwest A&F University , Yangling , 712100 Shaanxi , People's Republic of China.
Department of Animal Science , McGill University , Ste. Anne de Bellevue , Quebec H9X 3V9 , Canada.
ACS Synth Biol. 2018 Nov 16;7(11):2590-2599. doi: 10.1021/acssynbio.8b00261. Epub 2018 Oct 17.
Worldwide occurrence of methicillin-resistant Staphylococcus aureus (MRSA) poses enormous challenges for both communities and health care settings. Cassette chromosome recombinases (Ccr) specifically perform excision and acquisition of a staphylococcal cassette chromosome mec (SCC mec) in staphylococci and are responsible for the spread of methicillin resistance. This study explored the roles of CcrC2, a recently discovered Ccr, in the horizontal transfer of SCC mec and developed a potential means to control the spread of methicillin resistance. Knockout of CcrC2 completely aborted the excision of SCC mec, while overexpression of CcrC2 partially removed the SCC mec from the genome and transformed methicillin-resistant Staphylococcus aureus (MRSA) into methicillin-susceptible Staphylococcus aureus (MSSA). Moreover, two nucleotide residues (GC) in the direct repeat sequence within an att site were found to be critical for excision and acquisition efficiencies. To block the horizontal transfer of methicillin resistance, a SCC mec killer system was developed by combining the CcrC2-mediated SCC mec excision and the mecA-targeting CRISPR-Cas9 machinery. The SCC mec killer transformed MRSA to MSSA and disrupted the mecA-carrying SCC mec intermediate, thereby eliminating methicillin resistance determinant mecA gene inside a MRSA cell and blocking the horizontal transfer of SCC mec. The SCC mec killer was versatile for efficiently removing multiple types of SCC mec elements. It is envisioned that this approach could offer a new means to control the spread of methicillin resistance.
耐甲氧西林金黄色葡萄球菌(MRSA)在全球范围内的出现给社区和医疗环境都带来了巨大挑战。盒式染色体重组酶(Ccr)专门负责葡萄球菌中葡萄球菌盒式染色体mec(SCCmec)的切除和获取,并导致甲氧西林耐药性的传播。本研究探讨了最近发现的CcrC2在SCCmec水平转移中的作用,并开发了一种控制甲氧西林耐药性传播的潜在方法。敲除CcrC2完全阻止了SCCmec的切除,而CcrC2的过表达则部分地从基因组中去除了SCCmec,并将耐甲氧西林金黄色葡萄球菌(MRSA)转化为甲氧西林敏感金黄色葡萄球菌(MSSA)。此外,发现att位点内直接重复序列中的两个核苷酸残基(GC)对切除和获取效率至关重要。为了阻断甲氧西林耐药性的水平转移,通过将CcrC2介导的SCCmec切除与靶向mecA的CRISPR-Cas9机制相结合,开发了一种SCCmec杀伤系统。SCCmec杀伤系统将MRSA转化为MSSA,并破坏携带mecA的SCCmec中间体,从而消除MRSA细胞内的甲氧西林耐药决定因子mecA基因,并阻断SCCmec的水平转移。SCCmec杀伤系统对于有效去除多种类型的SCCmec元件具有通用性。可以设想,这种方法可以为控制甲氧西林耐药性的传播提供一种新手段。