Suppr超能文献

用 3D 打印和生物打印导管弥合周围神经修复的差距。

Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits.

机构信息

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA; The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.

The Center for Molecular Science, Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.

出版信息

Biomaterials. 2018 Dec;186:44-63. doi: 10.1016/j.biomaterials.2018.09.010. Epub 2018 Sep 12.

Abstract

Over the past two decades, a number of fabrication methods, including 3D printing and bioprinting, have emerged as promising technologies to bioengineer nerve conduits that closely replicate features of the native peripheral nerve, with the aim of augmenting or supplanting autologous nerve grafts. 3D printing and bioprinting offer the added advantage of rapidly creating composite peripheral nerve matrices from micron-scaled units, using an assortment of synthetic, natural and biologic materials. In this review, we explore the evolution of automated 3D manufacturing technologies for the development of peripheral nerve conduits and discuss aspects of conduit design, based on microarchitecture, material selection, cell and protein inclusion, and mechanical properties, as they are adaptable to 3D printing. Additionally, we highlight advancements in the application of bio-imaging modalities toward the fabrication of patient-specific nerve conduits. Lastly, we outline regulatory as well as clinical challenges that must be surmounted for the translation of 3D printing and bioprinting technology to the clinic. As a whole, this review addresses topics that may situate 3D manufacturing at the forefront of fabrication technologies that are exploited for the generation of future revolutionary therapies like in situ printing of peripheral nerves.

摘要

在过去的二十年中,出现了许多制造方法,包括 3D 打印和生物打印,这些方法是构建神经导管的有前途的技术,可以紧密复制周围神经的天然特征,目的是增强或替代自体神经移植物。3D 打印和生物打印具有额外的优势,可以使用各种合成、天然和生物材料,从微米级的单元快速创建复合周围神经基质。在这篇综述中,我们探讨了自动化 3D 制造技术在开发周围神经导管方面的发展,并根据微结构、材料选择、细胞和蛋白质包含以及机械性能讨论了导管设计的各个方面,因为这些方面都适应 3D 打印。此外,我们还强调了生物成像模式在制造患者特异性神经导管方面的应用进展。最后,我们概述了 3D 打印和生物打印技术向临床应用转化所必须克服的监管和临床挑战。总的来说,这篇综述涉及的主题可能将 3D 制造置于前沿地位,这些制造技术可用于开发未来的革命性治疗方法,例如周围神经的原位打印。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验